
Mike Amundsen
Foreword by Matt McLarty

RESTful Web API
Patterns & Practices
Cookbook
Connecting and Orchestrating Microservices
and Distributed Data

A
m

und
sen

SOF T WARE ARCHITEC TURE

“Amundsen has delivered
a valuable resource that
addresses common
and complex API
design choices in an
easy-to-understand
format. Along the way,
he helps the reader
tap into the power of
the HTTP protocol and
hypermedia. Anyone

 faced with designing
evolvable web-based
APIs that will stand the
test of time should read
this book.”

 —James Higginbotham
Author of Principles of Web API Design,
Executive API Consultant, LaunchAny

RESTful Web API Patterns
& Practices Cookbook

US $59.99 CAN $74.99
ISBN: 978-1-098-10674-4

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Many organizations today orchestrate and maintain apps
that rely on other people’s services. Software designers,
developers, and architects in those companies often work to
coordinate and maintain apps based on existing service APIs,
including third-party services that run outside their ecosystem.
This cookbook provides proven recipes to help you get those
many disparate parts to work together in your network.

Author Mike Amundsen provides step-by-step solutions for
finding, connecting, and maintaining applications designed
and built by people outside the organization. Whether you’re
working on human-centric mobile apps or creating high-
powered machine-to-machine solutions, this guide shows you
the rules, routines, commands, and protocols—the glue—that
integrate individual APIs so they can function together in a
safe, scalable, and reliable way.

• Design and build individual service interfaces that can
successfully interact on the open web

• Increase interoperability by designing APIs that share a
common understanding

• Build client applications that can adapt to evolving
services without breaking

• Create resilient and reliable APIs that support peer-to-
peer interactions on the web

• Use web-based API registries to support runtime “find and
bind” operations that manage external dependencies in
real time

• Implement stable workflows to accomplish complex,
multiservice tasks consistently

Mike Amundsen is an internationally
known author and speaker who travels
the world consulting and talking about
network architecture, web development,
and the intersection of technology and
society.

Praise for RESTful Web API Patterns and
Practices Cookbook

Creating scalable and reliable web APIs and efficiently consuming them is challenging,
maybe even more challenging than you think. This cookbook is full of recipes and

principles to help you face those known and unknown challenges.
—Arnaud Lauret, API Handyman,

OpenAPI Lead, Postman

This book does an excellent job of making good API design more accessible.
Look up the challenge you’re facing, and you’ll find a recipe with a solution

and an explanation of how it works.
—Erik Wilde, Catalyst, Axway

Mike Amundsen did it again with excellent best practices and examples of best of breed
API patterns. Easy to read, understand, and apply.

—Vicki Reyzelman,
Director of Platform and Governance

Amundsen has delivered a valuable resource that addresses common and complex API
design choices in an easy-to-understand format. The book contains plenty of examples

and diagrams to demonstrate the purpose and application of each recipe. Along the way,
he helps the reader tap into the power of the HTTP protocol and hypermedia. Anyone

faced with designing evolvable web-based APIs that will stand the test of time
should read this book.

—James Higginbotham,
Author of Principles of Web API Design,

Executive API Consultant, LaunchAny

More Books by Mike Amundsen

API Strategy for Decision Makers (2022) with Derric Gilling

Continuous API Management, 2nd ed. (2021) with Medjaoui, Wilde, and Mitra

Design and Build Great Web APIs (2020)

What Is Serverless? (2020)

API Traffic Management 101 (2019)

Continuous API Management, 1st ed. (2018) with Medjaoui, Wilde, and Mitra

RESTful Web Clients (2017)

Microservice Architecture (2016) with Nadareishvili, Mitra, and McLarty

RESTful Web APIs (2013) with Leonard Richardson

Building Hypermedia APIs with HTML5 and Node (2011)

Mike Amundsen

RESTful Web API Patterns and
Practices Cookbook

Connecting and Orchestrating Microservices
and Distributed Data

978-1-098-10674-4

[LSI]

RESTful Web API Patterns and Practices Cookbook
by Mike Amundsen

Copyright © 2023 Amundsen.com, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield Indexer: WordCo Indexing Services, Inc.
Development Editor: Angela Rufino Interior Designer: David Futato
Production Editor: Katherine Tozer Cover Designer: Karen Montgomery
Copyeditor: Sonia Saruba Illustrator: Kate Dullea
Proofreader: Piper Editorial Consulting, LLC

October 2022: First Edition

Revision History for the First Edition
2022-10-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098106744 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. RESTful Web API Patterns and Practi‐
ces Cookbook, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098106744

This book is dedicated to the memory of architect and design theorist
Christopher Alexander (1936–2022).

Thanks for helping me see the big picture while I continue to focus on the possible.

Table of Contents

Foreword. xi

Preface. xiii
About This Book xiii
Conventions Used in This Book xx
Using Code Examples xx
O’Reilly Online Learning xxi
How to Contact Us xxi
Acknowledgments xxii

Part I. Understanding RESTful Hypermedia

1. Introducing RESTful Web APIs. 3
What Are RESTful Web APIs? 4
Why Hypermedia? 9
Shared Principles for Scalable Services on the Web 16

2. Thinking and Designing in Hypermedia. 19
Establishing a Foundation with Hypermedia Designs 21
Increasing Resilience with Hypermedia Clients 26
Promoting Stability and Modifiability with Hypermedia Services 33
Supporting Distributed Data 40
Empowering Extensibility with Hypermedia Workflow 46

vii

Part II. Hypermedia Recipe Catalog

3. Hypermedia Design. 57
3.1 Creating Interoperability with Registered Media Types 60
3.2 Ensuring Future Compatibility with Structured Media Types 62
3.3 Sharing Domain Specifics via Published Vocabularies 64
3.4 Describing Problem Spaces with Semantic Profiles 68
3.5 Expressing Actions at Runtime with Embedded Hypermedia 73
3.6 Designing Consistent Data Writes with Idempotent Actions 76
3.7 Enabling Interoperability with Inter-Service State Transfers 79
3.8 Designing for Repeatable Actions 84
3.9 Designing for Reversible Actions 87
3.10 Designing for Extensible Messages 91
3.11 Designing for Modifiable Interfaces 95

4. Hypermedia Clients. 101
4.1 Limiting the Use of Hardcoded URLs 103
4.2 Coding Clients to Be HTTP Aware 107
4.3 Coding Resilient Clients with Message-Centric Implementations 110
4.4 Coding Effective Clients to Understand Vocabulary Profiles 113
4.5 Negotiating for Profile Support at Runtime 116
4.6 Managing Representation Formats at Runtime 119
4.7 Using Schema Documents as a Source of Message Metadata 123
4.8 Every Important Element Within a Response Needs an Identifier 128
4.9 Relying on Hypermedia Controls in the Response 132
4.10 Supporting Links and Forms for Nonhypermedia Services 135
4.11 Validating Data Properties at Runtime 139
4.12 Using Document Schemas to Validate Outgoing Messages 141
4.13 Using Document Queries to Validate Incoming Messages 147
4.14 Validating Incoming Data 150
4.15 Maintaining Your Own State 153
4.16 Having a Goal in Mind 156

5. Hypermedia Services. 163
5.1 Publishing at Least One Stable URL 165
5.2 Preventing Internal Model Leaks 167
5.3 Converting Internal Models to External Messages 171
5.4 Expressing Internal Functions as External Actions 176
5.5 Advertising Support for Client Response Preferences 181
5.6 Supporting HTTP Content Negotiation 186
5.7 Publishing Complete Vocabularies for Machine Clients 190

viii | Table of Contents

5.8 Supporting Shared Vocabularies in Standard Formats 196
5.9 Publishing Service Definition Documents 202
5.10 Publishing API Metadata 206
5.11 Supporting Service Health Monitoring 210
5.12 Standardizing Error Reporting 216
5.13 Improving Service Discoverability with a Runtime Service Registry 220
5.14 Increasing Throughput with Client-Supplied Identifiers 224
5.15 Improving Reliability with Idempotent Create 228
5.16 Providing Runtime Fallbacks for Dependent Services 232
5.17 Using Semantic Proxies to Access Noncompliant Services 238

6. Distributed Data. 245
6.1 Hiding Your Data Storage Internals 247
6.2 Making All Changes Idempotent 251
6.3 Hiding Data Relationships for External Actions 256
6.4 Leveraging HTTP URLs to Support “Contains” and “AND” Queries 260
6.5 Returning Metadata for Query Responses 264
6.6 Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries 270
6.7 Using Media Types for Data Queries 274
6.8 Ignoring Unknown Data Fields 280
6.9 Improving Performance with Caching Directives 285
6.10 Modifying Data Models in Production 291
6.11 Extending Remote Data Stores 298
6.12 Limiting Large-Scale Responses 302
6.13 Using Pass-Through Proxies for Data Exchange 307

7. Hypermedia Workflow. 315
7.1 Designing Workflow-Compliant Services 317
7.2 Supporting Shared State for Workflows 322
7.3 Describing Workflow as Code 325
7.4 Describing Workflow as DSL 329
7.5 Describing Workflow as Documents 331
7.6 Supporting RESTful Job Control Language 334
7.7 Exposing a Progress Resource for Your Workflows 338
7.8 Returning All Related Actions 342
7.9 Returning Most Recently Used Resources 346
7.10 Supporting Stateful Work in Progress 350
7.11 Enabling Standard List Navigation 358
7.12 Supporting Partial Form Submit 363
7.13 Using State-Watch to Enable Client-Driven Workflow 366
7.14 Optimizing Queries with Stored Replays 375
7.15 Synchronous Reply for Incomplete Work with 202 Accepted 381

Table of Contents | ix

7.16 Short-Term Fixes with Automatic Retries 387
7.17 Supporting Local Undo or Rollback 391
7.18 Calling for Help 396
7.19 Scaling Workflow with Queues and Clusters 400
7.20 Using Workflow Proxies to Enlist Noncompliant Services 403

8. Closing Remarks. 407
Applying These Recipes 407
Transforming Existing Services 410
Additional Resources 411
Next Steps 412

A. Guiding Principles of RESTful Web APIs. 415

B. Additional Reading. 417

C. Related Standards. 421

D. Using the HyperCLI. 425

Index. 433

x | Table of Contents

Foreword

Oh, what a tangled web we’ve woven!

I started my career in technology when the World Wide Web was first being used in
the business arena. In fact, the common thread throughout my career has been apply‐
ing the lessons of the web to the complex world of enterprise architecture and digital
business strategy, especially those web APIs that seem to be at the center of
everything.

In 2012, I had the pleasure of teaming up with Mike Amundsen. We’ve partnered on
many API-themed endeavors since, and I’ve never stopped learning from him. It was
Mike who taught me the fundamental principles of the web and so much more. It
never ceases to amaze me how Mike is able to find insights I overlooked that seem so
obvious in hindsight. RESTful Web API Patterns and Practices Cookbook puts many of
these principles and insights into one very practical package.

When the internet first hit the mainstream back in the early ’90s, I was at a small
undergraduate school getting a mathematics degree. My professors were the ones
most excited at first, which makes sense, I guess, given the web’s academic roots. I
used to have to pry them away from reading other people’s movie reviews to get back
to our algebra lessons. In those musty, book-laden campus offices, it wasn’t obvious at
all that the World Wide Web would become the most transformative human inven‐
tion of my lifetime, and arguably of all time.

So how did we go from pixelated bulletin boards of personal interests to a world
where 70% of business transactions take place digitally? A lot of the credit has to go
to the fact that the web was cooked up using a fairly simple set of ingredients: clients,
servers, networks, open protocols, and, of course, APIs. No matter how complex and
ubiquitous the web gets, those ingredients remain at its core.

xi

https://oreil.ly/1Qazf

Hyperlinks—or hypermedia, as a more encompassing term—have had a particularly
profound impact on technology. Originally modeled after academic citations (the
professors again), not only were hyperlinks the ingredient that brought the network
effect to the web, but they have also shaped user expectations for all technology since.
There was no user manual for the web, just some blue underlined text that encour‐
aged users to rely on intuition. This “follow your nose” principle is something Mike
has always emphasized, and it provides an important perspective when considering
APIs and the role of hypermedia.

So the world may not need a user manual for the web, but it certainly needs a devel‐
oper guide. On this topic, Mike has already authored or coauthored a number of
essential books: RESTful Web APIs, RESTful Web Clients, Microservice Architecture,
and Continuous API Management to name a few. RESTful Web API Patterns and Prac‐
tices Cookbook continues this work. Here, you will not only learn how the technolo‐
gies of the web are foundational to current computing, but also how the way that the
web works is fundamental to scalable architecture in current software ecosystems.
Mike parallels the principles of the web with de rigueur API design, illustrating how
these principles can be applied successfully. Most of all, you will learn how to archi‐
tect and build systems that are resilient to change and last the test of time.

Every organization is compounding the complexity of their software landscapes on a
continual basis, and increasingly connecting with partners and suppliers in a digital
ecosystem. If you want the recipes to thrive in that reality, this is the cookbook for
you.

—Matt McLarty, Global Field CTO of
MuleSoft at Salesforce Vancouver,

August 2022

xii | Foreword

Preface

Welcome to the world of the RESTful Web API Patterns and Practices Cookbook.

That’s quite a moniker—one worth explaining and exploring. And that’s what we’ll be
doing in this preface. I will tell you now that I’m going to break the rules a bit and
include a substantial amount of pertinent text in the front matter of this book (front
matter is all these pages with roman numerals as page numbers). I’ll save the details
for the next section (Part I). Let’s first take care of some logistics.

About This Book
The goal of this book is to enable software designers, architects, developers, and
maintainers to build service interfaces (APIs) that take advantage of the strengths of
the web, while lowering the costs and risks of creating reliable high-level services that
hold dependencies on other APIs and services reachable only over the network.

To do that, I’ve gathered a collection of more than 70 recipes and patterns that I’ve
learned and used over the several decades I’ve spent helping clients design, build, and
deploy successful business services on the open web. I suspect you will be familiar
with at least some of the recipes you’ll find here—possibly by other names or in dif‐
ferent forms. I also hope that you will find novel approaches to similar problems.

Over the years, I’ve found that the challenges of software design
rarely change. The solutions to those problems change frequently
based on technology advances and fashion trends. We’ll focus on
the challenges in this book, and I’ll leave the up-to-date technology
and fashion choices to you, the reader.

Since this is a cookbook, there won’t be much runnable code. There will, however, be
lots of diagrams, code snippets, and network message examples along with explana‐
tions identifying the problems. The challenges and discussion will always be technol‐
ogy and platform agnostic. These recipes are presented in a way that will let you

xiii

translate them into code and components that will work within your target
environment.

Who Should Read This Book
The primary audience for the book is the people tasked with planning, architecting,
and implementing service interfaces that run over HTTP. For some, that will mean
focusing on creating enterprise-wide service producers and consumers. For others, it
will mean building services that can live on the open web and run in a scalable and
reliable way for consumers across the globe. For all, it will mean creating usable appli‐
cation programming interfaces that allow programmers to solve the challenges before
them.

Whether you are hosting your solutions locally on your own hardware or creating
software that will run in the cloud, the recipes here will help you understand the chal‐
lenges and will offer a set of techniques for anticipating problems and building in
recovery to handle cases where the unanticipated occurs.

What’s Covered
Since the book is meant to be useful to a wide audience, I’ve divided it into chapters
focused on related topics. To start, Chapters 1 and 2 make up Part I of the book,
where we explore the background and foundations of shared services on the web. To
stretch the cookbook analogy, consider Part I as the story behind the “hypermedia
cusine” we’ll be exploring in Part II. Like any good cookbook, each of the main chap‐
ters in Part II contains a set of self-contained recipes that you can use to meet particu‐
lar challenges as you design, build, and deploy your web API “dishes.”

Online Resources
The book has a number of associated online resources, including a GitHub repository
and related web pages, some examples, and the latest updates to the recipe catalog.
You can reach all these resources via http://WebAPICookbook.com.

Here is a quick listing of the chapters and what they cover.

Part I: Understanding RESTful Hypermedia
The opening chapters (Chapters 1 and 2) describe the foundation that underpins all
the recipes in the book. They are a mix of history, philosophy, and pragmatic think‐
ing. These are the ideas and principles that reflect the lessons I’ve learned over my
years of designing, building, and supporting network software applications running
on the web.

xiv | Preface

http://WebAPICookbook.com

Chapter 1, Introducing RESTful Web APIs
This is a general overview of the rationale behind the selected recipes in this
book. It includes a section answering the question “what are RESTful web APIs
(RWAs)?,” reasons hypermedia plays such an important role in the creation of
RWAs, and some base-level shared principles that guide the selection and explan‐
ation of the recipes in this book. This chapter “sets the table” for all the material
that follows.

Chapter 2, Thinking and Designing in Hypermedia
This chapter explores the background of hypermedia-driven distributed systems
that form the foundation for web applications. Each recipe collection covered in
Part II (design, clients, services, data, and workflow) is explored with a mix of
history, philosophy, and pragmatic thinking. Reading this chapter will help you
understand some of the key design ideas and technical bases for all the patterns
and practices outlined in the rest of the book.

Part II: Hypermedia Recipe Catalog
Part II holds all the recipes I’ve selected for this volume. You’ll notice that most of the
chapters start with the word “hypermedia.” This should give you a clue to the overall
approach we’ll be taking throughout the book.

Chapter 3, Hypermedia Design
Reliable and resilient services start with thoughtful designs. This chapter covers a
set of common challenges you’ll need to deal with before you even get to the level
of coding and releasing your services. This chapter will be particularly helpful to
architects as well as service designers, and helps set the tone for the various rec‐
ipes that follow.

Chapter 4, Hypermedia Clients
This chapter focuses on challenges you’ll face when creating service/API con‐
sumer applications. I made a point of discussing client apps before talking about
recipes for service interfaces themselves. A common approach for creating flexi‐
ble and resilient service consumers is necessary for any program that plans on
creating a stable and reliable platform for open services that can live on the web
as well as within an enterprise.

Chapter 5, Hypermedia Services
With a solid foundation of design principles and properly architected client
applications, it can be easier to build and release stable service producers that can
be safely updated over time without breaking existing API consumers. This set of
recipes focuses not only on principles of solid service interface design but also on
the importance of supporting runtime error recovery and reliability patterns to
make sure your solutions stay up and running even when parts of your system
experience failures.

Preface | xv

Chapter 6, Distributed Data
This chapter focuses on the challenges of supporting persisted data in an online,
distributed environment. Most of the recipes here are aimed at improving the
responsiveness, scalability, and reliability of your data services by ensuring data
integrity—even when changing internal data models and implementations at
runtime.

Chapter 7, Hypermedia Workflow
The last set of recipes focuses on creating and managing service workflow on the
web. The key challenge to face for open services workflow is to create a safe and
reliable set of solutions for enlisting multiple unrelated services into a single,
resilient workflow to solve a problem none of the individual services knows any‐
thing about. I saved this chapter for last since it relies on many of the recipes cov‐
ered earlier in the book.

Chapter 8, Closing Remarks
The final chapter is a short wrap-up of the material as well as a “call-forward” to
help you decide on your own “next steps” as you set out to apply these recipes to
your environment.

Appendices
There are a series of appendices for the book that you can use as additional support
materials. These are sometimes referred to in the text but can also be treated as stand-
alone references.

Appendix A, Guiding Principles
This appendix is a short “motivational poster” version of the single guiding prin‐
ciple behind the selected recipes, as well as some secondary principles used to
shape the description and, ultimately, the implementation of these patterns in
general.

Appendix B, Additional Reading
Throughout the book, I’ll be recommending additional reading, quoting from
books and articles, and calling out presentations and videos that are the source of
much of the advice in the book. This appendix contains a self-standing list of
reading and viewing materials that you can use as references and a guide when
working through the recipes.

Appendix C, Related Standards
Since the goal of this book is to create services that can successfully live “on the
web,” the recipes depend upon a number of important open web standards. This
appendix contains a list of the related standards documents.

xvi | Preface

Appendix D, Using the HyperCLI
In several places in the book, I reference a command-line interface tool called
HyperCLI. You can use this tool to interact with hypermedia-aware services. This
appendix provides a short introduction to the tool and some pointers to other
online resources on how to take advantage of HyperCLI and HyperLang.

What’s Not Covered
As a book of recipes, this text is not suited for teaching the reader how to implement
the patterns and ideas listed here. If you are new to any of the pillars upon which this
book is built, you’ll want to look to other sources for assistance.

The following books are some that I have used in training and consulting engage‐
ments on topics not covered in detail in this book:

HTTP protocol
Most of the recipes in this book were developed for HTTP protocol implementa‐
tions. For more on the power and challenges of HTTP, I recommend the HTTP
Developer’s Handbook by Chris Shiflett (Sams). Shiflett’s text has been a great help
to me in learning the inside details of the HTTP protocol. Published in 2003, it is
still a valuable book that I highly recommend.

API design
For details on designing APIs for distributed services, I suggest readers check out
my Building Hypermedia APIs with HTML5 and Node (O’Reilly). For those look‐
ing for a book focused on coding APIs, my more recent book, Design and Build
Great Web APIs (Pragmatic Bookshelf), offers a detailed hands-on guide to the
full API lifecycle.

API clients
The work of coding API/service clients is a skill unto itself. For an extended look
at the process of creating flexible hypermedia-driven client applications, I refer
readers to my RESTful Web Clients (O’Reilly).

Web APIs
For details on creating web APIs themselves, I encourage readers to check out the
book RESTful Web APIs (O’Reilly), which I coauthored with Leonard Richard‐
son, and my book Design and Build Great Web APIs (O’Reilly). Other books I
keep close at hand include Principles of Web API Design by James Higginbotham
(Addison-Wesley) and Arnaud Lauret’s The Design of Web APIs (Manning).

Data
For more on handling data at scale, I recommend Data Management at Scale by
Piethein Strengholt (O’Reilly) and Data Governance: The Definitive Guide by
Evren Eryurek et al. (O’Reilly).

Preface | xvii

Workflow
The books Practical Process Automation by Bernd Ruecker (O’Reilly) and Service
Orchestration as Organization by Malinda Kapuruge et al. (O’Reilly) are a good
place to start exploring the world of workflow engineering.

There are many other sources of sage advice on designing and building distributed
services, and you’ll find a list of suggested reading in Appendix B.

About These Recipes
While the recipes in this cookbook are grouped by topic (design, client, server, data,
registry, and workflow), each recipe within the chapters follows the same general
pattern:

Problem
This is a short description of the problem you may run into as you design and
build your services.

Solution
This section is a narrative of the suggested solution (or solutions) you can
employ to solve the stated problem.

Example
In some cases, the recipe will include an example. This might be an HTTP mes‐
sage exchange (request/response) or even a short snippet of pseudocode to show
an internal workflow related to the solution.

Discussion
Recipes will also contain a more lengthy discussion section where trade-offs,
downsides, and advantages are covered. Often this is the most important section
of the recipe, since very few of these challenges have just one possible solution.

Related Recipes
Many of the recipes will end with a list of one or more other related recipes cov‐
ered elsewhere in the book. Some recipes rely on other recipes or enable them,
and this is where you’ll learn how the recipes interact with each other in actual
running systems.

How to Use This Book
I highly recommend reading the book from start to finish to get the full effect of the
concepts and recipes contained here. However, I also recognize that time may be
short and that you might not need a total immersion experience in order to get the
benefits of the book. With this in mind, here are a couple of different ways you can
read this book, depending on your focus, goals, and the amount of time you want to
devote to the text.

xviii | Preface

I’m in a hurry
If you recently picked up this book and are looking to solve a pressing problem,
just check out the Table of Contents for a recipe that sounds like it fits the bill
and jump right in. Like all good recipes, each one is written to be a complete
offering. There may be some references to other recipes in the book (especially
check out the “Related” subsections), and you can follow up with them as
needed.

Getting the “big picture” quickly
If you want to quickly get the big picture, I suggest you read all of Chapters 1 and
2 along with Chapter 8. Part I will give you the “tone” of the collection as well as
the history of the recipes and the techniques behind them. From there you can
decide whether you want to focus on a particular set in Part II or just roam the
collection.

Topic reference for focused teams
If you’re part of a team tasked with focusing on one or more of the topics covered
here (design, client-side, services, data, workflow, etc.), I suggest you first get the
big picture (Part I) and then dive into your particular topic chapter(s) in Part II.
You can then use the focus chapters as references as you move ahead with your
implementations.

Architect’s deep dive
A thorough read, cover to cover, can be helpful if your primary task is architect‐
ing openly available producer and consumer services. Many of the recipes in this
book can be used to implement a series of enterprise-level approved components
that can be safely stitched together to form a resilient, reliable foundation for a
custom service. In this way, the book can act as a set of recommendations for
shareable libraries within a single enterprise.

Checklist for managing enterprise-wide programs
For readers tasked with leading enterprise-wide or other large-scale programs, I
suggest getting the big picture first, and then using each topic chapter as a guide
for creating your own internal management checklists for creating and releasing
RESTful web APIs.

Finally, the book was designed to be a helpful reference as well as a narrative guide.
Feel free to use the parts that are helpful to you and skim the sections that don’t seem
to apply to your situation right now. At some future point, you might find it valuable
to go back and (re)read some sections as new challenges arise.

Preface | xix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://www.webapicookbook.com.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

xx | Preface

http://www.webapicookbook.com
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “RESTful Web API Pat‐
terns and Practices Cookbook by Mike Amundsen (O’Reilly). Copyright 2023 Amund‐
sen.com, Inc., 978-1-098-10674-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/restful-web-api.

Preface | xxi

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
https://oreil.ly/restful-web-api

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
No one who achieves success does so without acknowledging the help of others. The wise and
confident acknowledge this help with gratitude.

—Alfred North Whitehead

So many people have taught me, inspired me, advised me, and encouraged me, that I
hesitate to start a list. But several were particularly helpful in the process of writing
this book and they deserve notice.

As all of us do, I stand on the shoulders of giants. Over the years many have inspired
me, and some of those I’ve had the pleasure to meet and learn from. Those whose
thoughts and advice have shaped this book include Subbu Allamaraju, Belinda Bar‐
net, Tim Berners-Lee, Mel Conway, Roy Fielding, James Gleick, Ted Nelson, Mark
Nottingham, Holger Reinhardt, Leonard Richardson, Ian Robinson, and Jim Webber.

I especially want to thank Lorinda Brandon, Alianna Inzana, Ronnie Mitra, Sam
Newman, Irakli Nadareishvili, Vicki Reyzelman, and Erik Wilde for their help in
reading portions of the text and providing excellent notes and feedback.

I also need to thank all the folks at O’Reilly for their continued support and wise
counsel on this project. Specifically, I am deeply indebted to Mike Loukides and
Melissa Duffield, who believed in this project long before I was certain about its scope
and shape. I also want to say thanks to Angela Rufino for supporting me at every step
along the way. Also thanks to Katherine Tozer, Sonia Saruba, and so many others for
all the behind-the-scenes work that makes a book like this possible. A special thanks
to Kate Dullea and Diogo Lucas for supplying the book’s illustrations.

Finally, a big shout-out to all those I’ve encountered over the years: conference organ‐
izers and track chairs, companies large and small that hosted me for talks and con‐
sulting, course attendees, and the myriad social media denizens that asked me ques‐
tions, allowed me to peek into the workings of their organizations, and helped me
explore, test, and sharpen the ideas in this book. Everything you see here is due, in
large part, to the generosity of all those who came before me and those who work
tirelessly each day to build systems that leverage the concepts in Appendix A.

xxii | Preface

mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

PART I

Understanding RESTful Hypermedia

The difference between the novice and the teacher is simply that the novice has not learnt,
yet, how to do things in such a way that they can afford to make small mistakes. The teacher
knows that the sequence of their actions will always allow them to cover their mistakes a lit‐
tle further down the line. It is this simple but essential knowledge which gives the work of an
experienced carpenter its wonderful, smooth, relaxed, and almost unconcerned simplicity.

—Christopher Alexander

CHAPTER 1

Introducing RESTful Web APIs

Leverage global reach to solve problems you haven’t thought of for people you have never
met.

—The RESTful web APIs principle

In the Preface, I called out the buzzword-y title of this book as a point of interest.
Here’s where we get to explore the thinking behind RESTful web APIs and why I think
it is important to both use this kind of naming and grok the meaning behind it.

To start, I’ll talk a bit about just what the phrase “RESTful web APIs” means and why
I opted for what seems like a buzzword-laden term. Next, we’ll spend a bit of time on
what I claim is the key driving technology that can power resilient and reliable serv‐
ices on the open web—hypermedia. Finally, there’s a short section exploring a set of
shared principles for implementing and using REST-based service interfaces—some‐
thing that guides the selection and description of the patterns and recipes in this
book.

Hypermedia-based implementations rely on three key elements: messages, actions,
and vocabularies (see Figure 1-1). In hypermedia-based solutions, messages are
passed using common formats like HTML, Collection+JSON, and SIREN. These
messages contain content based on a shared domain vocabulary, such as PSD2 for
banking, ACORD for insurance, or FIHR for health information. And these same
messages include well-defined actions such as save, share, approve, and so forth.

3

Figure 1-1. Elements of hypermedia

With these three concepts, I hope to engage you in thinking about how we build and
use services over HTTP today, and how, with a slight change in perspective and
approach, we can update the design and implementation of these services in a way
that improves their usability, lowers the cost of creating and accessing them, and
increases the ability of both service producers and consumers to build and sustain
viable API-led businesses—even when some of the services we depend upon are
unreliable or unavailable.

To start, we’ll explore the meaning behind the title of the book.

What Are RESTful Web APIs?
I’ve used the phrase “RESTful web APIs” in articles, presentations, and training mate‐
rials for several years. My colleague, Leonard Richardson, and I wrote a whole book
on the topic in 2013. Sometimes the term generates confusion, even skepticism, but
almost always it elicits curiosity. What are these three words doing together? What
does the combination of these three ideas mean as a whole? To answer these ques‐
tions, it can help to take a moment to clarify the meaning of each idea individually.

So, in this section, we’ll visit:

Fielding’s REST
The architectural style that emphasizes scalability of component interactions,
generality of interfaces, and independent deployment of components.

4 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/a5Pwl

The web of Tim Berners-Lee
The World Wide Web was conceived as a universal linked information system, in
which generality and portability are paramount.

Alan Kay’s extreme late binding
The design aesthetic that allows you to build systems that you can safely change
while they are still up and running.

Fielding’s REST
As early as 1998, Roy T. Fielding made a presentation at Microsoft explaining his
concept of Representational State Transfer (or REST as it is now known). In this talk,
and his PhD dissertation that followed two years later (“Architectural Styles and the
Design of Network-based Software Architectures”), Fielding put forth the idea that
there was a unique set of software architectures for network-based implementations,
and that one of the six styles he outlined—REST—was particularly suited for the
World Wide Web.

Years ago I learned the phrase, “Often cited, never read.” That
snarky comment seems to apply quite well to Fielding’s dissertation
from 2000. I encourage everyone working to create or maintain
web-based software to take the time to read his dissertation—and
not just the infamous Chapter 5, “Representational State Transfer”.
His categorization of general styles over 20 years ago correctly
describes styles that would later be known as gRPC, GraphQL,
event-driven, containers, and others.

Fielding’s method of identifying desirable system-level properties (like availability,
performance, simplicity, modifiability, etc.), as well as a recommended set of con‐
straints (client-server, statelessness, cacheability, etc.) selected to induce these proper‐
ties, is still, more than two decades later, a valuable way to think about and design
software that needs to be stable and functional over time.

A good way to sum up Fielding’s REST style comes from the dissertation itself:
REST provides a set of architectural constraints that, when applied as a whole, empha‐
sizes scalability of component interactions, generality of interfaces, independent
deployment of components, and intermediary components to reduce interaction
latency, enforce security, and encapsulate legacy systems.

The recipes included in this book were selected to lead to designing and building
services that exhibit many of Fielding’s “architectural properties of key interest”. The
following is a list of Fielding’s architectural properties along with a brief summary of
their use and meaning:

What Are RESTful Web APIs? | 5

https://oreil.ly/cOvy4
https://oreil.ly/DqhFK
https://oreil.ly/78U8r
https://oreil.ly/78U8r
https://oreil.ly/PdLrH
https://oreil.ly/tl6U6
https://oreil.ly/J0Fc2

Performance
The performance of a network-based solution is bound by physical network limi‐
tations (throughput, bandwidth, overhead, etc.) and user-perceived performance,
such as request latency and the ability to reduce completion time through parallel
requests.

Scalability
The ability of the architecture to support large numbers of components, or inter‐
actions among components, within an active configuration.

Simplicity
The primary means of inducing simplicity in your solutions is by applying the
principle of separation of concerns to the allocation of functionality within com‐
ponents, and the principle of generality of interfaces.

Modifiability
The ease with which a change can be made to an application architecture via
evolvability, extensibility, customizability, configurability, and reusability.

Visibility
The ability of a component to monitor or mediate the interaction between two
other components using things like caches, proxies, and other mediators.

Portability
The ability to run the same software in different environments, including the
ability to safely move code (e.g., JavaScript) as well as data between runtime sys‐
tems (e.g., Linux, Windows, macOS, etc.)

Reliability
The degree to which an implementation is susceptible to system-level failures due
to the failure of a single component (machine or service) within the network.

The key reason we’ll be using many of Fielding’s architectural principles in these rec‐
ipes: they lead to implementations that scale and can be safely modified over long dis‐
tances of space and time.

The Web of Tim Berners-Lee
Fielding’s work relies on the efforts of another pioneer in the the online world, Sir
Tim Berners-Lee. More than a decade before Fielding wrote his dissertation, Berners-
Lee authored a 16-page document titled “Information Management: A Proposal”
(1989 and 1990). In it, he offered a (then) unique solution for improving information
storage and retrieval for the CERN physics laboratory where he worked. Berners-Lee
called this idea the World Wide Web (see Figure 1-2).

6 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/GpDkH
https://oreil.ly/GpDkH
https://oreil.ly/ZE5qk
https://oreil.ly/ZE5qk

Figure 1-2. Berners-Lee’s World Wide Web proposal (1989)

The World Wide Web (WWW) borrowed from the thinking of Ted Nelson, who
coined the term hypertext, by connecting related documents via links and—later—
forms that could be used to prompt users to enter data that was then sent to servers
anywhere in the world. These servers could be quickly and easily set up with free soft‐
ware running on common desktop computers. Fittingly, the design of the WWW fol‐
lowed the “Rule of Least Power,” which says that we should use the least powerful
technology suitable for the task. In other words, keep the solution as simple as possi‐
ble (and no simpler). This was later codified in a W3C document of the same name.

What Are RESTful Web APIs? | 7

https://oreil.ly/mkylW
https://oreil.ly/h0B2Q

This set up a low barrier of entry for anyone who wished to join the WWW commu‐
nity, and helped fuel its explosive popularity in the 1990s and early 2000s.

The Goal of the World Wide Web
In the document that laid out what would later become “the web”, Berners-Lee wrote:
“We should work toward a universal linked information system, in which generality
and portability are [most] important.”

On the WWW, any document could be edited to link to (point to) any other docu‐
ment on the web. This could be done without having to make special arrangements at
either end of the link. Essentially, people were free to make their own connections,
collect their own favorite documents, and author their own content—without the
need for permissions from anyone else. All of this content was made possible by using
links and forms within pages to create unique pathways and experiences—ones that
the original document authors (the ones being connected) knew nothing about.

We’ll be using these two aspects of the WWW (the Rule of Least Power and being free
to make your own connections) throughout the recipes in this book.

Alan Kay’s Extreme Late Binding
Another important aspect of creating reliable, resilient services that can “live on the
web” comes from US computer scientist Alan Kay. He is often credited with popular‐
izing the notion of object-oriented programming in the 1990s.

Alan Kay on OOP
When explaining his view of object-oriented programming (OOP) on an email list in
2003, Kay stated: “OOP to me means only 1) messaging, 2) local retention and pro‐
tection and hiding of state-process, and 3) extreme late-binding of all things.”

In 2019, Curtis Poe wrote a blog post exploring Kay’s explanation of OOP and,
among other things, Poe pointed out: “Extreme late-binding is important because Kay
argues that it permits you to not commit too early to the one true way of solving an
issue (and thus makes it easier to change those decisions), but can also allow you to
build systems that you can change while they are still running!” (emphasis Poe’s).

For a more direct exploration of the connections between Roy
Fielding’s REST and Alan Kay’s OOP, see my 2015 article, “The
Vision of Kay and Fielding: Growable Systems that Last for
Decades".

8 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/UIHJ7
https://oreil.ly/CbNWf
https://oreil.ly/vN8e4
https://oreil.ly/vN8e4
https://oreil.ly/pfi4t
https://oreil.ly/TLvzq
https://oreil.ly/TLvzq
https://oreil.ly/TLvzq

Just like Kay’s view of programming using OOP, the web—the internet itself—is
always running. Any services we install on a machine attached to the internet are
actually changing the system while it is running. That’s what we need to keep in mind
when we are creating our services for the web.

It is the notion that extreme late binding supports changing systems while they are
still running that we will be using as a guiding principle for the recipes in this book.

So, to sum up this section, we’ll be:

• Using Fielding’s notions of architecting systems to safely scale and modify over
time

• Leveraging Berners-Lee’s “Rule of Least Power” and the ethos of lowering the
barrier of entry to make it easy for anyone to connect to anyone else easily

• Taking advantage of Kay’s extreme late binding to make it easier to change parts
of the system while it is still running

An important technique we can use to help achieve these goals is called hypermedia.

Why Hypermedia?
In my experience, the concept of hypermedia stands at the crossroads of a number of
important tools and technologies that have positively shaped our information society.
And it can, I think, help us improve the accessibility and usability of services on the
web in general.

In this section we’ll explore:

• A century of hypermedia
• The value of messages
• The power of vocabularies
• Richardson’s magic strings

The history of hypermedia reaches back almost 100 years and it comes up in 20th
century writing on psychology, human-computer interactions, and information
theory. It powers Berners-Lee’s World Wide Web (see “The Web of Tim Berners-Lee”
on page 6), and it can power our “web of APIs,” too. And that’s why it deserves a bit of
extended exploration here. First, let’s define hypermedia and the notion of
hypermedia-driven applications.

Hypermedia: A Definition
Ted Nelson is credited with coining the terms hypertext and hypermedia as early as
the 1950s. He used these terms in his 1965 ACM paper “Complex Information Pro‐

Why Hypermedia? | 9

https://oreil.ly/bqY3B

cessing: A File Structure for the Complex, the Changing and the Indeterminate”. In
its initial design, according to Tomas Isakowitz in 2008, a hypertext system “consists
of nodes that contain information, and of links, that represent relationships between
the nodes.” Hypermedia systems focus on the connections between elements of a sys‐
tem.

Essentially, hypermedia provides the ability to link separate nodes, also called
resources, such as documents, images, services, even snippets of text within a docu‐
ment, to each other. On the network, this connection is made using universal
resource identifiers (URIs). When the connection includes the option of passing
some data along, these links are expressed as forms that can prompt human users or
scripted machines to supply inputs, too. HTML, for example, supports links and
forms through tags such as <A>, , <FORM>, and others. There are several formats
that support hypermedia links and forms.

These hypermedia elements can also be returned as part of the request results. The
ability to provide links and forms in responses gives client applications the option of
selecting and activating those hypermedia elements in order to progress the applica‐
tion along a path. This makes it possible to create a network-based solution that is
composed entirely of a series of links and forms (along with returned data) that, when
followed, provide a solution to the designed problem (e.g., compute results; retrieve,
update, and store data at a remote location; etc.).

Links and forms provide a generality of interfaces (use of hypermedia documents
over HTTP, for example) that powers hypermedia-based applications. Hypermedia-
based client applications, like the HTML browser, can take advantage of this general‐
ity to support a wide range of new applications without ever having their source code
modified or updated. We simply browse from one solution to the next by following
(or manually typing) links, and use the same installed client application to read the
news, update our to-do list, play an online game, etc.

The recipes in this book take advantage of hypermedia-based designs in order to
power not just human-driven client applications like HTML browsers, but also
machine-drive applications. This is especially helpful for clients that rely on APIs to
access services on the network. In Chapter 4, I’ll be introducing a command-line
application that allows you to quickly script hypermedia-driven client applications
without changing the installed client application code base (see Appendix D).

A Century of Hypermedia
The idea of connecting people via information has been around for quite a while. In
the 1930s, Belgium’s Paul Otlet imagined a machine that would allow people to search
and select a custom blend of audio, video, and text content, and view the results from
anywhere. It took almost one hundred years, but the streaming revolution finally
arrived in the 21st century.

10 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/bqY3B
https://oreil.ly/1Ggxv
https://oreil.ly/ehJpL
https://oreil.ly/ehJpL
https://oreil.ly/sxkh5

Paul Otlet
Otlet’s 1940 view (see Figure 1-3) of how his home machines could connect to various
sources of news, entertainment, and information—something he called the “World
Wide Network”—looks very much how Ted Nelson (introduced later in this section)
and Tim Berners-Lee (see “The Web of Tim Berners-Lee” on page 6) would imagine
the connect world, too.

Figure 1-3. Otlet’s World Wide Network (1940)

Vannevar Bush
While working as a manager for the Manhattan Project, Vannevar Bush noted that
when teams of individuals got together to work out problems in a creative setting,
they often bounced ideas off each other, leaping from one research idea to another
and making new connections between scientific papers. He wrote up his observations
in a July 1945 article, “As We May Think”, and described an information workstation
similar to Otlet’s that relied on microfiche and a “pointing” device mounted on the
reader’s head.

Why Hypermedia? | 11

https://oreil.ly/q3xPC
https://oreil.ly/V5U0l

Douglas Engelbart
Reading that article sparked a junior military officer serving in East Asia to think
about how he could make Bush’s workstation a reality. It took almost 20 years, but in
1968 that officer, Douglas Engelbart, led a demonstration of what he and his team had
been working on in what is now known as “The Mother of All Demos”. That session
showed off the then unheard of “interactive computer” that allowed the operator to
use a pointing device to highlight text and click to follow “a link.” Engelbart had to
invent the “mouse” pointer to make his demo work.

Mother of All Demos
Engelbart’s “Mother of All Demos” over 50 years ago at a December 1968 mainframe
convention in San Francisco set the standard for the Silicon Valley demos you see
today. Engelbart was alone onstage for 90 minutes, seated in a specially designed
Eames chair (the prototype for the Aeron chairs of today), working with his custom-
built keyboard, mouse, and a set of “paddles,” all while calmly narrating his activity
via an over-the-ear microphone that looked like something out of a modern-day
Madonna music video. Engelbart showed the first live interactive computer screen,
illustrated features like cut-copy-paste, hyperlinking, and multicursor editing, with
colleagues hundreds of miles away communicating via picture-in-picture video, ver‐
sion control, and a few other concepts that were still more than a decade away from
common use. If you haven’t watched the full video, I highly recommend it.

Ted Nelson
A contemporary of Engelbart, Ted Nelson, had been writing about the power of per‐
sonal computing as early as 1965 using terms he coined, such as hyperlinks, hypertext,
hyperdata, and hypermedia. By 1974, his book Computer Lib/Dream Machines (Tem‐
pus Books) laid out a world powered by personal electronic devices connected to
each other via the internet. At this same time, Alan Kay (see “Alan Kay’s Extreme Late
Binding” on page 8) had described the Dynabook device that looked very much like
the small laptops and tablets of today.

All these early explorations of how information could be linked and shared had a
central idea: the connections between things would enable people and power creativ‐
ity and innovation. By the late 1980s, Tim Berners-Lee had put together a successful
system that embodied all the ideas of those who came before him. Berners-Lee’s
WWW made linking pages of documents safe, easy, and scalable.

This is what using service APIs is all about—defining the connections between things
to enable new solutions.

12 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/D5eaV
https://oreil.ly/a38AX
https://oreil.ly/yvkYl
https://oreil.ly/EycWe
https://oreil.ly/YlocI
https://oreil.ly/YlocI
https://oreil.ly/wiNEO

James J. Gibson
Around the same time Ted Nelson was introducing the term hypertext to the world,
another person was creating terms, too. Psychologist James J. Gibson, writing in his
1966 book The Senses Considered as Perceptual Systems (Houghton-Mifflin), on how
humans and other animals perceive and interact with the world around them, created
the term affordance. From Gibson:

[T]he affordances of the environment are what it offers the animal, what it provides or
furnishes.

Gibson’s affordances support interaction between animals and the environment in the
same way Nelson’s hyperlinks allow people to interact with documents on the net‐
work. A contemporary of Gibson, Donald Norman, popularized the term affordance
in his 1988 book The Design of Everyday Things (Doubleday). Norman, considered
the grandfather of the Human-Computer Interaction (HCI) movement, used the
term to identify ways in which software designers can understand and encourage
human-computer interaction. Most of what we know about usability of software
comes from the work of Norman and others in the field.

Hypermedia depends on affordances. Hypermedia elements (links and forms) are the
things within a web response that afford additional actions such as searching for
existing documents, submitting data to a server for storage, and so forth. Gibson and
Norman represent the psychological and social aspects of computer interaction we’ll
be relying upon in our recipes. For that reason, you’ll find many recipes involve using
links and forms to enable the modification of application state across multiple
services.

The Value of Messages
As we saw earlier in this chapter, Alan Kay saw object-oriented programming as a
concept rooted in passing messages (see “Alan Kay’s Extreme Late Binding” on page
8). Tim Berners-Lee adopted this same point of view when he outlined the message-
centric Hypertext Transfer Protocol (HTTP) in 1992 and helped define the message
format of Hypertext Markup Language (HTML) the following year.

By creating a protocol and format for passing generalized messages (rather than for
passing localized objects or functions), the future of the web was established. This
message-centric approach is easier to constrain, easier to modify over time, and offers
a more reliable platform for future enhancements, such as entirely new formats

Why Hypermedia? | 13

https://oreil.ly/iQuJR
https://oreil.ly/C5msH
https://oreil.ly/DFTSe
https://oreil.ly/dFmp3
https://oreil.ly/KqmiE
https://oreil.ly/jEdZx
https://oreil.ly/JEVu6
https://oreil.ly/gQGS4

(XML, JSON, etc.) and modified usage of the protocol (documents, websites, web
apps, etc.).

Some Not-So-Successful Examples
HTTP’s encapsulated message approach also allowed for “not-so-successful” innova‐
tions, like Java Applets, Flash, and XHTML. Even though the HTTP protocol was
designed to support things like these “failed” alternatives to message-centric HTML,
these alternative formats had only a limited lifetime, and removing them from the
ecosystem did not cause any long-term damage to the HTTP protocol. This is a testa‐
ment to the resilience and flexibility of the HTTP approach to application-level
communication.

Message-centric solutions online have parallels in the physical world, too. Insect colo‐
nies such as termites and ants, famous for not having any hierarchy or leadership,
communicate using a pheromone-based message system. Around the same time that
Nelson was talking about hypermedia and Gibson was talking about affordances,
American biologist and naturalist E. O. Wilson (along with William Bossert) was
writing about ant colonies and their use of pheromones as a way of managing large,
complex communities.

With all this in mind, you probably won’t be surprised to discover that the recipes in
this book all rely on a message-centric approach to passing information between
machines.

The Power of Vocabularies
A message-based approach is fine as a platform. But even generic message formats
like HTML need to carry meaningful information in an understandable way. In 1998,
about the same time that Roy Fielding was crafting his REST approach for network
applications (see “Fielding’s REST” on page 5), Peter Morville and his colleague Louis
Rosenfeld published the book Information Architecture for the World Wide Web
(O’Reilly). This book is credited with launching the information architecture move‐
ment. University of Michigan professor Dan Klyn explains information architecture
using three key elements: ontology (particular meaning), taxonomy (arrangement of
the parts), and choreography (rules for interaction among the parts).

These three things are all part of the vocabulary of network applications. Notably,
Tim Berners-Lee, not long after the success of the World Wide Web, turned his atten‐
tion to the challenge of vocabularies on the web with his Resource Description
Framework (RDF) initiatives. RDF and related technologies such as JSON-LD are
examples of focusing on meaning within the messages, and we’ll be doing that in our
recipes, too.

14 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/0E5AF
https://oreil.ly/xVHFn
https://oreil.ly/G2Ekz
https://oreil.ly/G2LMX
https://oreil.ly/G2LMX
https://oreil.ly/UP6si
https://www.w3.org/RDF
https://www.w3.org/RDF

For the purposes of our work, Klyn’s choreography is powered by hypermedia links
and forms. The data passed between machines via these hypermedia elements is the
ontology. Taxonomy is the connections between services on the network that, taken
as a whole, create the distributed applications we’re trying to create.

Richardson’s Magic Strings
One more element worth mentioning here is the use and power of ontologies when
you’re creating and interacting with services on the web. While it makes sense that all
applications need their own coherent, consistent terms (e.g., givenName, familyName,
voicePhone, etc.), it is also important to keep in mind that these terms are essentially
what Leonard Richardson called “magic strings” in the book RESTful Web APIs from
2015.

Closing the Semantic Gap with Magic Strings
Richardson explains the importance of using shared terms across applications in
order to close the “semantic gap” of meaning between components. He also points out
that, even in cases where you’re focused on creating machine-to-machine services,
humans are still involved—even if that is only at the programming level. In RESTful
Web APIs, he says, “Names matter quite a bit to humans. Although computers will be
your API’s consumers, they’ll be working on behalf of human beings, who need to
understand what the magic strings mean. That’s how we bridge the semantic gap”
(emphasis mine).

The power of the identifiers used for property names has been recognized for quite
some time. The whole RDF movement (see “The Power of Vocabularies” on page 14)
was based on creating network-wide understanding of well-defined terms. At the
application level, Eric Evans’s 2014 book Domain-Driven Design (Addison-Wesley)
spends a great deal of time explaining the concepts of “ubiquitous language” (used by
all team members to connect all the activities within the application) and “bounded
context” (a way to break up large application models into coherent subsections where
the terms are well understood).

Evans was writing his book around the same time Fielding was completing his disser‐
tation. Both were focusing on how to get and keep stable understanding across large
applications. While Evans focused on coherence within a single codebase, Fielding
was working to achieve the same goals across independent codebases.

It is this shared context across separately built and maintained services that is a key
factor in the recipes within this book. We’re trying to close Richardson’s “semantic
gap” through the design and implementation of services on the web.

Why Hypermedia? | 15

https://www.crummy.com/self
https://oreil.ly/eVpUA
https://oreil.ly/UWTe0
https://oreil.ly/iY6Ur

In this section we’ve explored the hundred-plus years of thought and effort (see “A
Century of Hypermedia” on page 10) devoted to using machines to better communi‐
cate ideas across a network of services. We saw how social engineering and psychol‐
ogy recognized the power of affordances (see “James J. Gibson” on page 13) as a way
of supporting a choice of action within hypermedia messages (see “The Value of Mes‐
sages” on page 13). Finally, we covered the importance, and power, of well-defined
and maintained vocabularies (see “The Power of Vocabularies” on page 14) to enable
and support semantic understanding across the network.

These concepts make up a kind of toolkit or set of guidelines for identifying helpful
recipes throughout the book. Before diving into the details of each of the patterns,
there’s one more side trip worth taking. One that provides an overarching, guiding set
of principles for all the content here.

Shared Principles for Scalable Services on the Web
To wrap up this introductory chapter, I want to call out some base-level shared prin‐
ciples that acted as a guide when selecting and defining the recipes I included in this
book. For this collection, I’ll call out a single, umbrella principle:

Leverage global reach to solve problems you haven’t thought of for people you have
never met.

We can break this principle down a bit further into its three constituent parts.

Leverage Global Reach…
There are lots of creative people in the world, and millions of them have access to the
internet. When we’re working to build a service, define a problem space, or imple‐
ment a solution, there is a wealth of intelligence and creativity within reach through
the web. However, too often our service models and implementation tooling limit our
reach. It can be very difficult to find what we’re looking for and, even in cases where
we do find a creative solution to our problem by someone else, it can be far too costly
and complicated to incorporate that invention into our own work.

For the recipes in this book, I tried to select and describe them in ways that increase
the likelihood that others can find your solution, and lower the barrier of entry for
using your solution in other projects. That means the design and implementation
details emphasize the notions of context-specific vocabularies applied to standardized
messages and protocols that are relatively easy to access and implement.

Good recipes increase our global reach: the ability to share our solutions and to find
and use the solutions of others.

16 | Chapter 1: Introducing RESTful Web APIs

…to Solve Problems You Haven’t Thought of…
Another important part of our guideline is the idea that we’re trying to create services
that can be used to build solutions to problems that we haven’t yet thought about.
That doesn’t mean we’re trying to create some kind of “generic service” that others
can use (e.g., data storage as a service or access control engines). Yes, these are
needed, too, but that’s not what I’m thinking about here.

To quote Donald Norman (from his 1994 video):
The value of a well-designed object is when it has such as rich set of affordances that
the people who use it can do things with it that the designer never imagined.

I see these recipes as tools in a craftperson’s workshop. Whatever work you are doing,
it often goes better when you have just the right tool for the job. For this book, I tried
to select recipes that can add depth and a bit of satisfaction to your toolkit.

Good recipes make well-designed services available for others to use in ways we
hadn’t thought of yet.

…for People You Have Never Met
Finally, since we’re aiming for services that work on the web—a place with global
reach—we need to acknowledge that it is possible that we’ll never get to meet the peo‐
ple who will be using our services. For this reason, it is important to carefully and
explicitly define our service interfaces with coherent and consistent vocabularies. We
need to apply Eric Evans’s ubiquitous language across services. We need to make it
easy for people to understand the intent of the service without having to hear us
explain it. Our implementations need to be—to borrow Fielding’s phrase—“state-
less”; they need to carry with them all the context needed to understand and success‐
fully use the service.

Good recipes make it possible for “strangers” (services and/or people) to safely and
successfully interact with each other in order to solve a problem.

Dealing with Timescales
Another consideration we need to keep in mind is that systems have a life of their
own and they operate on their own timescales. The internet has been around since
the early 1970s. While its essential underlying features have not changed, the internet
itself has evolved over time in ways few could have predicted. This is a great illustra‐
tion of Norman’s “well-designed object” notion.

Large-scale systems not only evolve slowly—even the features that are rarely used
persist for quite a long time. There are features of the HTML language (e.g., <mar
quee>, <center>, <xmp>, etc.) that have been deprecated, yet you can still find instan‐
ces of these language elements online today. It turns out it is hard to get rid of some‐

Shared Principles for Scalable Services on the Web | 17

https://oreil.ly/Xo4SR

thing once it gets out onto the internet. Things we do today may have long-term
effects for years to come.

Design on the Scale of Decades
We can take advantage of long-term timescales in our designs and implementations.
Fielding, for example, has said that “REST is software design on the scale of decades:
every detail is intended to promote software longevity and independent evolution.”

Of course, not all solutions may need to be designed to last for a long time. You may
find yourself in a hurry to solve a short-term problem that you assume will not last
for long (e.g., a short service to perform a mass update to your product catalog). And
that’s fine, too. My experience has been, don’t assume your creations will always be
short-lived.

Good recipes promote longevity and independent evolution on a scale of decades.

This Will All Change
Finally, it is worth saying that, no matter what we do, no matter how much we plot
and plan, this will all change. The internet evolved over the decades in unexpected
ways. So did the role of the HTTP protocol and the original HTML message format.
Software that we might have thought would be around forever is no longer available,
and applications that were once thought disposable are still in use today.

Whatever we build—if we build it well—is likely to be used in unexpected ways, by
unknown people, to solve as yet unheard-of problems. For those committed to creat‐
ing network-level software, this is our lot in life: to be surprised (pleasantly or not) by
the fate of our efforts.

I’ve worked on projects that have taken more than 10 years to become noticed and
useful. And I’ve thrown together short-term fixes that have now been running for
more than two decades. For me, this is one of the joys of my work. I am constantly
surprised, always amazed, and rarely disappointed. Even when things don’t go as
planned, I can take heart that eventually, all this will change.

Good recipes recognize that nothing is permanent, and things will always change
over time.

With all this as a backdrop, let’s take some time to more deeply explore the technol‐
ogy and design thinking behind the selected recipes in this book. Let’s explore the art
of “thinking in hypermedia.”

18 | Chapter 1: Introducing RESTful Web APIs

https://oreil.ly/CjfEO

CHAPTER 2

Thinking and Designing in Hypermedia

There are no separate systems. The world is a continuum. Where to draw a boundary
around a system depends on the purpose of the discussion.

—Donella H. Meadows

Before diving into the recipes in Part II of this book, it’s worth spending some time
digging into the roots of the web and the ideas behind its design. To that end, this
chapter highlights some of the important concepts and technical milestones of net‐
work computing. These achievements helped shape the way we interact on the web
today and, in some ways, the way we think about computing in general.

When thinking about programming the network, often the focus is on what it takes
to program a machine. Things like the programming language, use of memory, data
storage, and passing properties back and forth through functions are seen as the pri‐
mary tools. However, when it comes to programming the network, new challenges
appear, and that means we need new thinking and new tooling, too.

In the following sections, you’ll find some historical materials as well as commentary
on their application to today’s attempts to move beyond stateful, local programming
models. In “Establishing a Foundation with Hypermedia Designs” on page 21, you’ll
find the ideas behind the design recipes in this book, including:

• How to establish common communication between machines first discussed in
the early 1960s

• The notion of information architecture from the 1990s
• The application of hypermedia as a runtime programming model for independ‐

ent machines on the network

19

As shown in Figure 2-1, thinking in Nelson’s hypermedia means adopting Roy Field‐
ing’s generality of interfaces in order to support Alan Kay’s late binding. All the while,
we need to think about the importance of scalability and independent deployability in
order to build resilient solutions.

Figure 2-1. Thinking and designing in hypermedia means balancing a number of goals
simultaneously

The material in “Increasing Resilience with Hypermedia Clients” on page 26 covers the
background behind creating robust client applications that can function in a network
of services. That means focusing on some important features of API consumers that
improve resilience and adaptability; for example, a focus on protocols and formats as
the strong typing for network clients, the ability to recognize and react to interaction
details in the message at runtime (links and forms), and relying on semantic vocabu‐
laries as the understanding shared between clients and services. These three elements
make up a set of practices that lead to stable API consumers that do not “break” when
service elements, like protocol details, resource URLs, message schema, and opera‐
tion workflow, change over time.

20 | Chapter 2: Thinking and Designing in Hypermedia

The key challenge to designing successful service APIs is to balance stability with
evolvability—the ability to keep your promises to API consumers and support
advancement of the capabilities of the services behind your interface. The concepts
covered in “Promoting Stability and Modifiability with Hypermedia Services” on
page 33 are the keys to meeting this challenge. These include the modifiability problem
(the reality of handling change over time) and the need for a machine-driven “self-
service” approach to finding and consuming other services in the network. Along the
way you’ll see how you can apply hypermedia to help solve these problems.

“Supporting Distributed Data” on page 40 introduces the notion that data is evidence:
evidence of some action as well as the leftover effects of that action. Many attempts to
program the network are mistakenly started by thinking that data is at the center of
the design. In this section, you’ll see that data for the most part is best thought of as
outside the design—important, but not at the center (I’ll be playing the role of Galileo
here). We’ll also spend time talking about the role of information retrieval query lan‐
guages (IRQLs) versus database query languages (DQLs) and why it is so important
to lean heavily on IRQLs when programming the network.

Finally, in “Empowering Extensibility with Hypermedia Workflow” on page 46, we’ll
explore the challenges of designing and implementing multiservice workflows. In the
machine-centric programming world, this is modeled as orchestration when a single
supervisor is in charge of service integration, or as choreography when the services are
working closely together directly—without the aid of an intermediary. While both of
these approaches make sense in a machine-centric system, enlisting independent
services on a network is better served by a general protocol and vocabulary approach
—one that relies on using links and forms (hypermedia) to drive a coordinated set of
independent actions running at various locations to solve a defined problem. It is in
this definition of workflow that the programming of the network is fulfilled.

We’ll also explore the challenges for implementing web-based workflows (covered in
detail in Chapter 7): sharing state between services, constraining the scope of a single
workflow definition (aka a job), supporting workflow observability, and dealing with
workflow errors at runtime. That’s a lot to cover, so let’s get started.

Establishing a Foundation with Hypermedia Designs
The first set of recipes in this book (Chapter 3) focuses on design challenges. There
are three general ideas behind the design recipes:

• An agreed communication format to handle connections between networked
machines

• A model for interpreting data as information
• A technique for telling machines, at runtime, just what actions are valid

Establishing a Foundation with Hypermedia Designs | 21

All the recipes in this book are devoted to the idea of making useful connections
between application services running on networked machines. The most common
way to do that today is through TCP/IP at the packet level and HTTP at the message
level.

There’s an interesting bit of history behind the way the US Department of Defense
initially designed and funded the first machine-to-machine networks (Advanced
Research Projects Agency Network or ARPANET), which eventually became the
internet we use today. It involves space aliens. In the 1960s, as the US was developing
computer communications, the possibility of encountering aliens from outer space
drove some of the design choices for communicating between machines.

Along with agreed-on protocols for intermachine communications, the work of
organizing and sharing data between machines is another design theme. To do this,
we’ll dig a bit into information architecture (IA) and learn the value of ontologies,
taxonomies, and choreography. The history of IA starts at about the same time that
Roy Fielding was developing his REST software architecture style and was heavily
influenced by the rise of Berners-Lee’s World Wide Web of HTTP and HTML. Also,
Chapter 3 uses IA as an organizing factor to guide how we describe service capabili‐
ties using a shared vocabulary pattern.

Finally, we’ll go directly to the heart of how machines built by different people who
have never met each other can successfully interact in real time on an open network
—using “hypermedia as the engine of application state.” Reliable connections via
HTTP and consistent modeling using vocabularies are the prerequisites for interac‐
tion, and hypermedia is the technique that enables that interaction. The recipes in
Chapter 3 will identify ways to craft hypermedia interactions, while the subsequent
chapters will contain specifics on how to make those designs function consistently.

So, let’s see how the possibility of aliens from outer space, information architecture,
and hypermedia converge to shape the design of RESTful web APIs.

Licklider’s Aliens
In 1963, J.C.R. “Lick” Licklider, a little-known civilian working in the US Deparment
of Defense, penned an interoffice memo to his colleagues working in what was then
called the Advanced Research Projects Agency (ARPA). Within a few years, this
group would be responsible for creating the ARPANET—the forerunner of today’s
internet. However, at this early stage, Licklider addressed his audience as the “Mem‐
bers and Affiliates of the Intergalactic Network”. His memo focused on how comput‐
ing machines could be connected—how they could communicate successfully with
one another.

In the memo, Licklider calls out two general ways to ensure computers can work
together. One option was to make sure all computers on the planet used the same

22 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/HKWEq
https://oreil.ly/cv7xO
https://oreil.ly/cv7xO

languages and programming tools, which would make it easy for machines to con‐
nect, but difficult for them to specialize. The second option was to establish a sepa‐
rate, shared network-level control language that allowed machines to use their own
preferred local tooling and languages, and then use another shared language to com‐
municate on the network. This second option would allow computer designers to
focus on optimizing local functionality, but it would add complexity to the work of
programming machines to connect with each other.

In the end (lucky for us!), Licklider and his team decided on the second approach,
favoring preferred local machine languages and a separate, shared network-level lan‐
guage. This may seem obvious to us today, but it was not clear at the time. It wasn’t
just Licklider’s decision, but his unique reasoning for it that stands out today: the pos‐
sibility of encountering aliens from outer space. You see, while ARPA was working to
bring the age of computing to life, another US agency, NASA, was in a race with the
Soviet Union to conquer outer space.

Here’s the part of Licklider’s memo that brings the 1960s space race and the comput‐
ing revolution together:

The problem is essentially the one discussed by science fiction writers: “how do you get
communications started among totally uncorrelated ‘sapient’ beings?”

Licklider was speculating on how our satellites (or our ground-based transmitters)
might approach the problem of communicating with other intelligent beings from
outer space. He reasoned that we’d accomplish it through a process of negotiated
communications—passing control messages or “metamessages” (messages about how
we send messages) back and forth until both parties understood the rules of the
game. Ten years later, the TCP and IP protocols of the 1970s would mirror Licklider’s
ideas and form the backbone of the internet we enjoy today.

The Licklider Protocol
Forty years after Licklider speculated about communicating with machines in outer
space, members of the Internet Engineering Task Force (IETF) completed work on a
transmission protocol for interplanetary communications. This protocol was named
the Licklider Transmission Protocol or LTP and is described in IETF documents RFC
5325, RFC 5326, and RFC 5327.

Today, here on Earth, Licklider’s thought experiment on how to communicate with
aliens is at the heart of making RESTful web APIs (RWAs) a reality. As we work to
design and implement services that communicate with each other on the web, we,
too, need to adopt a metamessage approach. This is especially important when we
consider that one of the aims of our work is to “get communications started among
totally uncorrelated” services. In the spirit of our guiding principle (see “Shared Prin‐

Establishing a Foundation with Hypermedia Designs | 23

https://oreil.ly/HhKRx
https://oreil.ly/FcB4x
https://oreil.ly/Hk1JD
https://oreil.ly/Hk1JD
https://oreil.ly/KAD3F
https://oreil.ly/VZG4L

ciples for Scalable Services on the Web” on page 16), people should be able to confi‐
dently design and build services that will be able to talk to other services built by
other people they have never met, whether the services were built yesterday, today, or
in the future.

Morville’s Information Architecture
The 1990s was a heady time for proponents of the internet. Tim Berners-Lee’s World
Wide Web and HTTP/HTML (see “The Web of Tim Berners-Lee” on page 6), was up
and running, Roy Fielding was defining his REST architecture style (see “Fielding’s
REST” on page 5), and Richard Saul Wurman was coining a new term: information
architect. In his 1997 book Information Architects (Graphis), Wurman offers this defi‐
nition:

Information Architect: 1) the individual who organizes the patterns inherent in data,
making the complex clear; 2) a person who creates the structure or map of information
which allows others to find their personal paths to knowledge; 3) the emerging 21st
century professional occupation addressing the needs of the age focused upon clarity,
human understanding and the science of the organization of information.

A physical architect by training, Wurman founded the Technology, Entertainment,
and Design (TED) conferences in 1984. A prolific writer, he has penned almost a
hundred books on all sorts of topics, including art, travel, and (important for our
focus) information design. One of the people who picked up on Wurman’s notion of
architecting information was library scientist Peter Morville. Considered one of the
founding fathers of the information architecture movement, Morville has authored
several books on the subject. His best known, first released in 1998, is titled simply
Information Architecture for the World Wide Web (O’Reilly) and is currently in its
fourth edition.

Morville’s book focuses on how humans interact with information and how to design
and build large-scale information systems to best support continued growth, manage‐
ment, and ease of use. He points out that a system with a good information architec‐
ture (IA) helps users of that system to understand where they are, what they’ve found,
what else is around them, and what to expect. These are all properties we need for our
RWA systems, too. We’ll be using recipes that accomplish these same goals for
machine-to-machine interactions.

One of the ways we’ll organize the IA of RWA implementations is through the use of a
three-part modeling approach: ontology, taxonomy, and choreography (see “The
Power of Vocabularies” on page 14). Several recipes are devoted to information archi‐
tecture, including Recipes 3.3, 3.4, and 3.5.

24 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/A6Teg
https://oreil.ly/ThMEx
https://oreil.ly/vtcHM

Explaining Information Architecture
Dan Klyn, founder of The Understanding Group (TUG), has a very nice, short video
titled “Explaining Information Architecture” that shows how ontology, taxonomy,
and choreography all work together to form an information architecture model.

Hypermedia and “A Priori Design”
One of the reasons I started this collection of recipes with the topic of “design” is that
the act of designing your information system establishes some rules from the very
start. Just as the guiding principles (see “Shared Principles for Scalable Services on the
Web” on page 16) we discussed in Chapter 1 establish a foundation for making deci‐
sions about information systems, design recipes make that foundation a reality. It is
this first set of recipes in Chapter 3 that affect, and in many ways govern, all the rec‐
ipes in the rest of the book.

In this way, setting out these first recipes is a kind of an “a priori design” approach.
One of the definitions of a priori from the Merriam-Webster dictionary is “formed or
conceived beforehand,” and that is what we are doing here. We are setting out ele‐
ments of our systems beforehand. There is an advantage to adopting this a priori
design approach. It allows us to define stable elements of the system upon which we
can build the services and implement their interaction.

Creating a design approach means we need a model that works for more than a single
solution. For example, an approach that only works for content management systems
(CMSs) but not for customer relationship management systems (CRMs) is not a very
useful design approach. We intuitively know that these two very different solutions
share quite a bit in common (both at the design and the technical solution level), but
it often takes some work to tease out those similarities into a coherent set—a set of
design principles.

This can be especially challenging when we want to create solutions that can change
over time. Solutions that remain stable while new features are added, new technology
solutions are implemented, and additional resources like servers and client apps are
created to interact with the system over time. What we need is a foundational design
element that provides stability while supporting change.

In this set of designs, that foundational element is the use of hypermedia, or links and
forms, (see “Why Hypermedia?” on page 9) as the device for enabling communica‐
tions between services. Fielding called hypermedia “the engine of application state”.
Hypermedia provides that metamessaging Licklider identified (see “Licklider’s Ali‐
ens” on page 22). It is the use of hypermedia that enables Kay’s “extreme late binding”
(see “Alan Kay’s Extreme Late Binding” on page 8).

Establishing a Foundation with Hypermedia Designs | 25

https://oreil.ly/Eu5VC
https://vimeo.com/8866160
https://oreil.ly/QnvxO

Increasing Resilience with Hypermedia Clients
Since computers, as Ted Nelson tells us, “do what you tell them to do,” we have a
responsibility to pay close attention to what we tell them. In Chapter 4, we’ll focus on
what we tell API consumers (client applications). There is a tendency to be very
explicit when telling computers what to do, and that’s generally a good thing. This is
especially true when creating API-driven services (see Chapter 5). The more accurate
our instructions, the more likely it is that the service will act in ways we expect. But
client applications operate in a different way. And that’s the focus of these client
recipes.

While API-based services need to be stable and predictable, API client applications
need to excel at being adaptable and resilient. Client applications exist to accomplish
a task; they have a purpose. As we’ll discuss, it is important to be clear about just what
that purpose is—and how explicit we want to be when creating the API consumer.

A highly detailed set of instructions for an API client will make it quite effective for
its stated job. But it will also render the client API unusable for almost any other task.
And, if the target service for which it was designed changes in any meaningful way,
that same client application will be “broken.” It turns out that the more detailed the
solution, the less reusable it becomes. Conversely, if you want to be able to reuse API
consumers, you need to change the way you implement them.

Balancing usability (the ease of use for an API) and reusability (the
ease of using the same API for another task) is tricky. Abstraction
improves reuse. The HTTP protocol is rather abstract (a URL, a set
of methods, collection of name-value pairs, and a possible message
body in one of many possible formats), and that makes it very reus‐
able. But the HTTP protocol itself is not very usable without lots of
supporting technologies, standards, and existing tooling (e.g., web
servers and web browsers).

The recipes in Chapter 4 are aimed at increasing the resilience of client applications.
That means focusing on some important features of API consumers that improve
resilience and adaptability. These are:

• A focus on protocols and formats
• Resolving interaction details at runtime
• Designing differently for machine-to-machine (M2M) interactions
• Relying on a semantic vocabulary shared between client and server

These four elements make up a set of practices that lead to stable API consumers that
do not “break” when service elements like protocol details, resource URLs, message

26 | Chapter 2: Thinking and Designing in Hypermedia

schema, and operation workflow change over time. All the client recipes focus on
these four elements and the resulting stability and resilience they bring to your client
applications.

Let’s cover each of them in turn.

Binding to Protocols and Formats
An important element to building successful hypermedia-enabled client applications
is the work of binding the client to responses. Although programmers might not think
about it, whenever we write an API consumer app, we’re creating a binding between
producers (services) and consumers (clients). Whatever we use as our “binding
agent” is the thing that both clients and servers share. The most effective bindings are
the ones that rarely, if ever, change over time. The binding we’re talking about here is
the actual expression of the “shared understanding” between clients and services.

Common binding targets are things like URLs (e.g., /persons/123) or objects (e.g.,
{id:"123", {person:{...}}}). There are, for example, lots of frameworks and gen‐
erators that use these two binding agents (URLs and objects) to automatically gener‐
ate static code for a client application that will work with a target service. This turns
out to be a great way to quickly deploy a working client application. It also turns out
to be an application that is hard to reuse and easy to break. For example, any changes
in the API’s storage objects will break the API consumer application. Also, even if
there is an identical service (one that has the same interface) running at a different
URL, the generated client is not likely to successfully interact since the URLs are not
the same. URLs and object schema are not good binding agents for long-term use/
reuse.

A much better binding target for web APIs is the protocol (e.g., HTTP, MQTT, etc.)
and the message format (e.g., HTML, Collection+JSON, etc.). These are much more
stable than URLs and objects. They are, in fact, the higher abstract of each. That is to
say, protocol is the higher abstraction of URLs, and message formats (or media types
on the web) are the higher abstraction of object schema. Because they are more uni‐
versal and less likely to change, protocol and format make for good binding agents.
Check out Recipes 4.3 and 4.6 for details.

For example, if a client application is bound to a format (like Collection+JSON), then
that client application can be successfully used with any service (at any URL) that
supports Collection+JSON bindings. This is what HTML web browsers have been
doing for more than 30 years.

But protocol and format are just the start of a solid foundation of shared understand‐
ing. The other keys to stable, reliable API consumer applications include runtime
support metadata, semantic profiles, and client-centric workflows.

Increasing Resilience with Hypermedia Clients | 27

https://oreil.ly/tgDyn
https://oreil.ly/tgDyn

Runtime Resolution with Metadata
One of the challenges of creating flexible API clients is dealing with all the details of
each HTTP request: which HTTP method to use, what parameters to pass on the
URL, what data is sent in request bodies, and how to deal with additional metadata
like HTTP headers. That’s quite a bit for information to keep track of, and it is espe‐
cially tedious when you need to handle this metadata for each and every HTTP
request.

The typical way to deal with request metadata is to “bake” it into the service interface.
Documentation usually instructs programmers how to approach a single action for
the API, like adding a new record, using instructions like this:

• Use POST with the /persons/ URL.
• Pass at least four (givenName, familyName, telephone, and email) parameters in

the request body.
• Use the application/x-www-form-urlencoded serialization format for request

bodies.
• Expect an HTTP status code of 201 upon successful completion, and a Location

header indicating the URL of the new record.

The example supplied here is actually a summary of a much more detailed entry in
most documentation I encounter. The good news is that most web programmers have
internalized this kind of information and don’t find it too off-putting. The not-so-
good news is that writing all this out in code is falling into the trap of the wrong
“binding agent” mentioned. Any changes to the URL or the object/parameters will
render the client application “broken” and in need of an update. And, especially early
in the lifecycle of an API/service, changes will happen with annoying frequency.

The way to avoid this is to program the client application to recognize and honor
these request details in the metadata sent to the client at runtime. We’ll cover this in
Recipe 4.9. Again, HTML has been doing this kind of work for decades. The follow‐
ing is an example of the same information as runtime metadata:

<form action="/persons/" method="post",
 enc-type="application/x-www-form-urlencoded">
 <input type="text" name="givenName" value="" required />
 <input type="text" name="familyName" value="" required />
 <input type="tel" name="telephone" value="" required />
 <input type="email" name="email" value="" required />
 <input type="submit" />
</form>

As you have already surmised, the HTML web browser has been programmed to
recognize and honor the metadata sent to the client. Yes, there is programming

28 | Chapter 2: Thinking and Designing in Hypermedia

involved—the one-time work of supporting FORMS in messages—but the good news is
you only need to write that code once.

I’ve used HTML as the runtime metadata example here, but there
are a handful of JSON-based formats that have rich support for
runtime metadata. The ones I commonly encounter are Collection
+JSON, SIREN, and UBER.

Support for runtime metadata can make writing human-to-machine applications
pretty easy. There are libraries that support parsing hypermedia formats into human-
readable user interfaces, very similar to the browsers that do this for HTML. But sup‐
porting runtime metadata for M2M interaction is more complicated. That’s because
the human brain is missing from the equation.

To support stable, reliable M2M interactions, we need to make up for the missing
human in the interaction. That’s where semantic profiles come in.

Machine-to-Machine Challenges
Our brains are amazing. So amazing that we often don’t even notice how much
“magic” they are doing for us. A fine example of this can be seen in the act of filling in
a simple HTML form (like the one we just covered). Once our eyes scan the page
(magical enough!), our brain needs to handle quite a few things:

• Recognize there is a FORM that can be filled in and submitted
• Work out that there are four inputs to supply
• Recognize the meaning of givenName and the other values
• Scour memory or some other source to find values to fill in all the inputs
• Know that one needs to press the Submit button in order to send the data to the

server for processing

We also need to be able to deal with things like error messages if we don’t fill in all the
inputs (or do that work incorrectly), and any response from the server such as
“unable to save data” or some other strings that might require the human to take fur‐
ther action.

When we write human-to-machine API clients, we can just assume that all that men‐
tal power is available to the client application “for free”—we don’t need to program it
in at all. However, for M2M applications, that “free” intelligence is missing. Instead
we need to either build the power of a human into our app, or come up with a way to
make the interactions work without the need for a human mind running within the
application.

Increasing Resilience with Hypermedia Clients | 29

https://oreil.ly/4Dg58
https://oreil.ly/4Dg58
https://oreil.ly/8eKMQ
https://oreil.ly/DVX76

If you want to spend your time programming machine learning and artificial intelli‐
gence, you can take option one. In this book, we’ll be working on option two instead.
The client recipes will be geared toward supporting “limited intelligence” in the client
application. We can do this by leaning on media types to handle things like recogniz‐
ing a FORM and its metadata. We’ll also be leveraging semantic profiles as a way of
dealing with the parameters that might appear within a FORM and how to associate
these parameters with locally (client-side) available data to fill in the parameter val‐
ues. We’ll also talk about how to modify the service workflow support to make it eas‐
ier for M2M clients to safely interact with services (see Chapter 5 for more on this).

Relying on Semantic Vocabularies
To date, the most successful M2M interactions on the web have been those that
require only reading data—not writing it. Web spiders, search bots, and similar solu‐
tions are good examples of this. Some of this has to do with the challenge of idempo‐
tence and safety (see Recipe 3.6 for answers to this challenge).

Another big part of the M2M challenge has to do with the data properties for individ‐
ual requests. Humans have a wealth of data at their beck and call that machines usu‐
ally do not. Adding a new field to a FORM is usually not a big challenge for a human
tasked with filling it out. But it can be a “breaking change” for an M2M client applica‐
tion. Getting past this hurdle takes some effort on both ends of the interaction (client
and server).

An effective way to meet this challenge is to rely upon semantic profiles (see Recipe
3.4)—documents that detail all the possible property names and action details (links
and forms) used for a set of problems (e.g., account management, payment services,
etc.) to set boundaries on the vocabulary that a client application is expected to
understand. In other words, the client and server can agree ahead of time on which
data properties will be needed to successfully interact with the application. You’ll see
this in Recipe 4.4.

By using semantic profiles to establish the boundaries of a service
ahead of time—and by promising to keep that boundary stable—
we get another important “binding agent” that works especially
well for M2M interactions. Now we can use protocol, format, and
profile as three stable, yet flexible, binding elements for client-
server interactions.

There is one more important element to building successful RWA clients—the ability
for clients to author and follow their own multiservice workflows instead of being
tied to a single service or bound by a static, prebuilt interactive script.

30 | Chapter 2: Thinking and Designing in Hypermedia

Supporting Client-Centric Workflows
Most API client applications are statically tied to a single API service. These clients
are essentially one-off and custom-built. One of the fundamental ways these apps are
linked to a service is expressed in the workflow implementation. Just as there are
applications that use URLs and object schema as binding agents, there are also appli‐
cations that use sequential workflow as a binding agent. The client application knows
only one set of possible workflows, and the details of that set do not change.

This statically bound workflow is often expressed in client code directly. For example,
a service named customerOnboarding might offer the following URLs (with object
schema to match):

• /onboarding/customer with schema { customer: {…}}
• /onboarding/contact with schema { contact: {…}}
• /onboarding/agreement with schema { agreement: {…}}
• /onboarding/review with schema { review: {…}}

For the service, there are four defined steps that are executed in sequence. That
sequence is often outlined, not in the service code, but in the service documentation.
That means it is up to the client application to convert the human-speak in the docu‐
mentation into machine-speak in the code. It usually looks something like this:

function onboardCustomer(customer, contact, agreement, review) {
 http.send("/onboarding/customer","POST", customer);
 http.send("/onboarding/contact", "POST", contact);
 http.send("/onboarding/agreement", "POST", agreement);
 http.send("/onboarding/review", "POST", review);
 return "200 OK";
}

The first challenge in this example is that the static binding means any change to ser‐
vice workflow (e.g., adding a creditCheck step) will mean the client app is “broken.”
A better approach is to tell the client what work needs to be done, and provide the
client application the ability chose and execute steps as they appear. We can use
hypermedia in responses to solve that problem:

function onboardCustomer() {
 results = http.read("/onboarding/work-in-progress", "GET");
 while(results.actions) {
 var action = results.actions.pop();
 http.send(action.url, action.method, map(action.parameters,local.data));
 }
 return "200 OK";
}

Increasing Resilience with Hypermedia Clients | 31

In this simplified example, the client “asks” the service for a list of actions to take and
then performs those actions using the runtime metadata (see “Runtime Resolution
with Metadata” on page 28) in the message. The client continues this until there are
no more actions to complete. There are other variations on this pattern that we’ll
explore (see Recipe 4.9). In the second example, when the order changes or even the
number of steps changes, it is less likely that this client implementation will break.

There is one more version of this client-centric approach worth noting—where the
client sets the workflow, not the service. This is a common case when the client needs
to enlist several separate services to complete a task. Consider the previous example,
but this time assume that the workflow relies on an external contact management
cloud service and an independent credit-checking service. These two external serv‐
ices need to be mixed with your own company’s standalone customer, agreement,
and review services. In this world, services don’t know about each other. They don’t
control the workflow; the client application does. In fact, the true “application” exists
only as a client implementation.

A pseudocode for this scenario looks similar to the previous one but includes a client-
side version of the set of steps to execute, written out in a choreography configura‐
tion document that contains a set of starting URLs and possible arguments for each
step:

function onboardCustomer(choreography) {
 while(choreography) {
 var step = choreography.pop();
 var action = http.get(step.URL);
 http.send(action.url, action.method, map(action.parameters,local.data));
 }
 return "200 OK";
}

In this latest example, the source of the choreography comes from the client applica‐
tion. It is also up to the client application to decide when it has completed its work.
This is a kind of client-centric goal setting (see Recipe 4.16) that is not very hard to
support when you already have a foundation of stable, flexible binding agents relying
on protocols, formats, and profiles.

There is another approach to client-centric workflow that relies on
a particular status value (or set of values) on one or more servers.
See Recipe 7.13 for an example of this option.

32 | Chapter 2: Thinking and Designing in Hypermedia

http://contacts.example.org
http://contacts.example.org
http://credit-check.example.gov

Promoting Stability and Modifiability with
Hypermedia Services
The key challenge to designing successful service APIs is to balance stability with
evolvability—the ability to keep your promises to API consumers and support
advancement of the capabilities of the services behind your interface. All the recipes
for the services chapter (Chapter 5) were selected to help with this challenge.

At the root of the problem is the reality of change over time. The longer a service
stays in production, the more likely that the service will change. On the opposite end
of the spectrum, short-lived, one-off services rarely “live” long enough to grow or
change. They pop up, do their job, and disappear. The architectural element of time
causes us to face the realities of change.

Taking a hypermedia approach to designing service interfaces gives us some handy
tools for supporting change over time while still providing stable, predictable inter‐
faces. By establishing hypermedia as part of your message design, your interface can
set up “safe zones” of modifiability. The hypermedia controls (links and forms) pro‐
vide a vector for supporting change. For example, by coding an API consumer to
parse hypermedia forms, services are free to change interaction details such as URLs
and HTTP methods, and even message formats and parameters. In this way, hyper‐
media does what Carnegie Mellon University professor and author Paul Clements
advises us good software architecture does: it “knows what changes often and makes
that easy.”

But using hypermedia in your messages is not enough. Services often need to talk to
other services. After all, we’re participating in a network. When one service depends
on another, we run the risk of creating a fatal dependency chain—one where changes
in one service in the stack bubble up to all the other services that rely upon it. And
when that happens, unexpected things can happen. Sometimes changes in one of the
called services result in changes to the interface. Sometimes those changes might be
incompatible with the task of the calling service—a breaking change is exposed. We
need a way to account for, and resolve, the dependency problem, too.

The most direct way to survive problems with service dependencies is to eliminate
them. But that’s usually an unrealistic goal. We rely on other services for a reason—
they provide something we need and don’t have ourselves. Most often today, the next
best response to broken services dependencies is for a human to find another service
that provides the same functionality. Usually this means that 1) services break and
notifications are sent, 2) humans react to the notification and work up a solution
(typically finding a replacement for the broken services), and 3) the updated compo‐
nent is placed into production.

Promoting Stability and Modifiability with Hypermedia Services | 33

https://oreil.ly/kyj2i

A better approach (that is implemented within closed systems like Kubernetes) auto‐
mates that process. When services are released, their metadata is entered into a regis‐
try where other authorized services can find them and instantly start a “real-time
integration” process that results in limited (if any) downtime.

Some of the recipes in Chapter 5 address this self-driven (re)location and integration
activity by using standardization and automation. We’ll explore this in greater detail
in Chapter 7 when we talk about multiservice workflows.

The Modifiability Problem
Frankly, it’s not very difficult to create a service interface—a web API. Proof of this
fact is the long list of tools that read database schema and/or scan existing codebases
and output HTTP APIs, ready to deploy into production. The actual production of
the interface is easy. But the work of designing a well-crafted, long-lasting API is not
so easy. A key element in all this is time. Services that live a long time experience
updates—modifications—that threaten the simplicity and reliability of the API that
connects that service to everything else. Time is at the heart of the modifiability
problem.

As long as your service never changes, your API design and implementation needs
can be minimal. This is true, for example, with APIs that expose mainframe or mini‐
computer based services that have been running for decades. It is unlikely they will
change, and therefore it’s pretty easy to create a stable interface in front of those serv‐
ices. That’s where schema-based and object-based API tooling shines.

But there are fewer and fewer of these kinds of long-running services in the world
today. More often, APIs need to connect to services that were recently created—serv‐
ices that are just a few years old. Many times, these services were designed to meet
immediate needs and, as time goes on, those needs evolve. The easy route is to create
a “new” interface, slap an identifier on it (e.g., “/v2/”), and republish. There are many
companies that do that today.

The good ones keep the old versions around for a long time, too. That makes it possi‐
ble for client applications to manage their own upgrade path on their own timeline.
But many companies retire the old version too soon. That puts pressure on API con‐
sumers to update their own code more quickly to keep up with the pace of change on
the service end. When you consider that some client apps are consuming more than
one API, each on its own update schedule, it is possible that an API consumer app is
always dealing with some dependency update challenge. That means that API-driven
applications could be in a constant state of disruption.

A better approach is to adopt a pattern that allows services to evolve without causing
client applications that use them to experience breakages or disruption. What is

34 | Chapter 2: Thinking and Designing in Hypermedia

needed is an API design approach that supports both service evolvability and inter‐
face stability. Here is a set of principles that can lead us to stable, evolvable interfaces:

• Adopting the “Hippocratic Oath of APIs”
• Committing to the “Don’t Change It, Add It” rule
• Taking the “APIs Are Forever” point of view

The Hippocratic Oath of APIs
One way to address the modifiability problem is to pledge to never “break” the inter‐
face—the promise to maintain compatibility as the interface changes. This is a kind of
Hippocratic Oath of APIs. Written between the fifth and third centuries BCE, the
Hippocratic Oath is an ethical promise Greek physicians were expected to follow. The
most well-known portion of the oath is the line “I will abstain from all intentional
wrong-doing and harm”. This is often rephrased to “First, do no harm.”

When creating interfaces, it is important to commit—from the start—to “do no
harm.” That means the only kinds of modifications you can make are ones that don’t
break promises. Here are three simple rules you can use to keep this “no breaking
changes promise”:

Take nothing away.
Once you document and publish an endpoint URL, support for a protocol or
media type, a response message, an input parameter or output value, you cannot
remove them in a subsequent interface update. You may be able to set the value
to null or ignore the value in future releases, but you cannot take it away.

Don’t redefine things.
You cannot change the meaning or use of an existing element of the interface.
For example, if the response message was published as a user object, you cannot
change it to a user collection. If the output property count was documented as
containing the number of records in the collection, you cannot change its mean‐
ing to the number of records on a single page response.

Make additions optional.
After the initial publication of the API, any additional inputs or outputs must be
documented as optional—you cannot add new required properties for existing
interfaces. That means, for example, that you cannot add a new input property
(backup_email_address) to the interface action that creates a new user record.

Don’t change it, add it
By following these three rules, you can avoid the most common breaking changes for
APIs. However, there are a few other details. First, you can always create new
endpoints (URLs) where you can set the rules anew on what inputs and outputs are

Promoting Stability and Modifiability with Hypermedia Services | 35

https://oreil.ly/M9wUn
https://oreil.ly/M9wUn

expected. The ability to just “add more options” is a valuable way to support service
evolvability without changes to existing elements.

For example, you may have the opportunity to create a new, improved way to return
filtered content. The initial API call did not support the ability to modify the number
of records returned in a response; it was always fixed at a max of one hundred. But
the service now supports changing the page_size of a response. That means you can
offer two interface options that might look like this in the SIREN media type:

"actions": [
 {
 "name": "filter-list",
 "title": "Filter User List",
 "method": "GET",
 "href": "http://api.example.org/users/filter"
 "type": "application/x-www-form-urlencoded",
 "fields": [
 { "name": "region", "type": "text", "value": ""},
 { "name": "last-name", "type": "text", "value": "" }
]
 },
 {
 "name": "paged-filter-list",
 "title": "Filter User List",
 "method": "GET",
 "href": "http://api.example.org/users/paged-filter"
 "type": "application/x-www-form-urlencoded",
 "fields": [
 { "name": "page-size", "type": "number", "value": "100"},
 { "name": "region", "type": "text", "value": ""},
 { "name": "last-name", "type": "text", "value": "" }
]
 }
]

Note that you might think that instead of offering two forms, it would be safe to offer
a single, updated form that includes the page_size property with the value set to
"100". This is not a good idea. An existing client application might have been coded
to depend upon the return list containing more than one hundred elements. By
changing the default behavior to now return only one hundred rows, you might be
“breaking” an existing client application.

Adding new elements is almost always safer than changing existing elements.

APIs are forever
The interface—the service API—is the contract that service producers make with API
consumers. Like most contracts, they are meant to be kept. Breaking the contract is
seen as breaking a promise. For this reason, it is wise for service API designers to
treat the API as “unbreakable” and to assume they will last “forever.” Werner Vogels,

36 | Chapter 2: Thinking and Designing in Hypermedia

Amazon’s CTO, puts it like this: “We knew that designing APIs was a very important
task as we’d only have one chance to get it right.” While this seems a daunting task, it
can be made much easier when you build into the API design the ability to safely
change elements over time.

Of course, things change over time. Services evolve. They add features, modify
inputs, and update outputs. That means the contract we make with API consumers
needs to reflect the possibility of future changes. Essentially, change needs to be “writ‐
ten into the agreement.”

While it isn’t reasonable for interface designers to be able to accurately predict what
the actual interface changes will be (“In two years, we’ll add a third output property
called better-widget”), it is reasonable for designers to create an interface that takes
into account the possibility of future changes (“API consumers SHOULD ignore any
additional properties that they do not understand”). In other words, the API design
needs to not only accurately describe the current service interface, it also needs to
account for possible future changes in a way that helps API consumers “survive” any
unexpected evolution of the interface.

Lucky for us, there is a well-established approach we can use to account for variability
in the interface over time. That method is called hypermedia.

How Hypermedia Can Help
At this point it’s worthwhile to take a moment to ask, “Why is it important to design
interfaces that offer this ability to support both stability and evolvability?” It is cer‐
tainly harder than just emitting static interfaces tied directly to internal data and/or
object models. And most developers don’t need to worry about “change over time,”
either. Roy Fielding has been quoted as saying, “Software developers have always
struggled with temporal thinking.” They just need to get something out the door that
actually solves the problem in front of them. The short answer is that long-lasting
architecture in any form (software, network, structural, etc.) is a useful goal. We
should all be aiming to create interfaces that are useful and remain so over a long
period of time.

The longer answer touches on the role that well-designed interfaces play in the
growth and egalitarian nature of computing. The man credited with bootstrapping
the design of both HTTP and HTML, Tim Berners-Lee, says, “The web is for every‐
one.” Creating well-designed, long-lasting interfaces makes it possible for more peo‐
ple to interact with the services behind the APIs. More interactions can lead to better,
more creative uses. And that can lead to the possibility of fostering positive change—
not just on the internet, but in the world in general. The HTTP protocol, and its side‐
kick HTML, have had a fantastic impact on how the world works today. Much of the
HTTP/HTML success has to do with the fact that, after more than three decades,

Promoting Stability and Modifiability with Hypermedia Services | 37

https://oreil.ly/JdYkh
https://oreil.ly/Gb5JA
https://oreil.ly/lJYFB

these two stable, evolvable designs continue to foster innovation and creativity in all
corners of the world.

Now, I don’t think any of my work in designing and implementing APIs will ever have
the impact that HTTP and HTML have had, but I like to think that my contributions
to the internet might live up to the same ethos: “The web is for everyone.” For that
reason, I encourage designers and implementers of service APIs to do their utmost to
create stable and evolvable interfaces.

So, how do we do that? We can provide stability for API consumers by relying on reg‐
istered structured media types like HTML, HAL, Collection+JSON, SIREN, and oth‐
ers to exchange messages. We can support evolvability by including key elements that
change often within those messages. These elements are the addresses (URLs),
actions, (links and forms), and data objects (message properties).

Providing stability with message formats
API client applications need to be able to rely upon a stable of response and request
messages in order to operate effectively. One way to make that possible is to commit
to using one of the many registered structured message formats. This is what the web
browser client does, too. It relies on a stable format (HTML) for passing most text-
based messages from service to client. On the web, HTML is used as the default
response format whether the service (website) is returning accounting information,
social network data, game renderings, etc. Committing to using a well-known, well-
designed format is essential for creating stable interfaces.

For more on programming with structured media type formats,
check out my book RESTful Web Clients (O’Reilly).

There are a handful of worthy formats to pick from when you implement your ser‐
vice APIs. The IANA (Internet Assigned Numbers Authority) Media Types Registry is
the source I use to find message formats that have the longevity and support that
make them a good candidate for APIs. The most common formats currently in use
include HAL, SIREN, and Collection+JSON, and there are several others.

Several recipes in Chapter 5 address the process of selecting and supporting struc‐
tured media types.

Supporting evolvability with hypermedia controls
If the first step is to offer API consumers stability via structured media types, the sec‐
ond step (supporting evolvability) can be accomplished by selecting structured media

38 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/C0YYr
https://oreil.ly/Vgjq2
https://oreil.ly/eeuxf
https://oreil.ly/zD9q7
https://oreil.ly/oxk6e

types rich in hypermedia controls. The more hypermedia features you include in your
messages, the more evolvability you can support over time.

When you emit hypermedia formats, you have the ability to include new actions
(added forms) as well as safe updates to existing actions (added properties, updated
URLs, and changed HTTP methods). These are the most common things that will
change in a service interface over time.

There are still limitations to this approach. Using hypermedia formats allows you to
make it easy to change the addresses (URLs), objects (data properties), and actions
(forms) safely and consistently. However, you may still need to modify the domain
properties (names of things) over time, too. You might, for example, need to add a
new property to the list of possible inputs (middleName), or a new output value
(alternateEmail), or a new request parameter (/filter/?newRegionFilter=south).
In this case, you’ll need to create a new vocabulary document and allow clients to dis‐
cover and select these additional vocabularies at runtime (see Chapter 3 for details).
There are some recipes in Chapter 5 that address this ability to select vocabularies,
too.

From Self-Servicing to Find and Bind
Another important element of services on the web is the ability for API consumers to
“self-service” their onboarding experience. The power to simply select the desired ser‐
vice and instantly use it is a worthy goal. That’s essentially the way people interact
with websites today. Someone finds content that interests them and they can “grab a
link” to that content and either share the link with others or copy that link onto their
own web page where others will be able to see—and follow—the link to that same
content. This is such a common, fundamental experience on the web that we don’t
really think of it as an “integration” or an onboarding experience. We just think,
“That’s the way the web works.”

That’s the way services should work, too. But most of the time, they do not. Instead,
developers are left with a manual process of locating, selecting, and integrating exist‐
ing services into their own solution. This can be a frustrating process with lots of fits
and starts. It can be hard to find what you are looking for. Once you find an API that
might work, it can be hard to understand the documentation. Also, it can be challeng‐
ing to successfully integrate external APIs into your own service. Often, developers
need to go through this process several times (once for each API on which the service
will depend) before the job is done. Even after the service is completed, tested, and
released, the entire process can start again when any one of the dependent APIs
changes its interface.

What’s needed is a way to automate most of this activity into a process that happens at
runtime. A process I call “find and bind.” By standardizing the way services are
named and described (metadata), we can automate the way services are discovered

Promoting Stability and Modifiability with Hypermedia Services | 39

(find) and the way they are integrated (bind). This ability to find and interact with
remote services you’ve never “met” before is the foundation of the current Domain
Name System (DNS) for connecting machines with each other over the internet.

Supporting Distributed Data
Chapter 6 contains recipes that focus on storing and retrieving data within networked
solutions. For much of the lifetime of data storage for computing, people have been
focused on the concepts of systems of record (SOR) and single source of truth (SSOT).
In general, these concepts focus on ensuring the accuracy of information by identify‐
ing a single location for each piece of data. This is also where the notion of master
data management (MDM) comes into play. Controlling who can edit (what used to be
called “master”) the data is a key element in this story. Essentially, SSOT/MDM sys‐
tems are built to assume there is just one authentic source for each data element and
that everyone should agree on what (and where) those sources are.

However, on the open web, it is impossible to control where data is stored and how
many copies are created of any piece or collection of data. In fact, it is wise to assume
there will always be more than one copy of any data you are working with. It may be
possible to explicitly ask for the most recent value for a data point or to try to keep
track of which location is to be treated as the definitive source of a particular piece of
data. But you should assume that the copy of the data you have is not always the copy
others have.

All Data Is Remote
This notion of data on the web having multiple copies is an important point; one not
to gloss over. Author and software architect Irakli Nadareishvili once expressed a sim‐
ilar “rule” to me when he told me, “Treat all data as if it was remote.” When you treat
data as remote, you make a few other important assumptions: 1) you can’t change the
storage medium or schema, 2) you can’t control who can read or write information at
that source, and 3) you’re on your own when that data becomes unavailable (either
temporarily or permanently).

For services that need to handle their own data, this “data on the web” rule should
change the way you store, access, and validate the data you are charged with manag‐
ing. For example, when possible you should keep track of who has requested data
from you (via log records). You should also keep track of who has sent you updates to
the data you are managing. Data services are also responsible for local data integrity.
It should be impossible for anyone to write an invalid data record. Whenever
possible, you should also support reversing data updates (within a limited time win‐
dow). Finally, even when instructed to delete data, it is a good idea to keep a copy of it

40 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/C69bp
https://oreil.ly/C69bp
https://oreil.ly/0LPwv
https://oreil.ly/RiKUs
https://oreil.ly/60rK2
https://oreil.ly/60rK2
http://linkedapis.org

around for a while in case it needs to be restored at some future point (again, subject
to an established time window).

Nadareishvili’s “data on the web” rule is important for services that depend on remote
data, too. In situations where your service does not manage the data it works with
(but depends on other services for that data), it is a good idea to always ask your
remote sources for the most recent copies of the data you are working with to make
sure you keep up with any changes that have occurred since you last read (or
received) that data. You should also be prepared to have your data updates rejected by
the dependent data services with which you are interacting. The service that stores the
data is in charge of maintaining the integrity of that data.

You should be ready to support reversing a data update when needed, including the
possibility of reversing a delete operation. This can be especially tricky when you are
working with services that interact with more than one data source (e.g., a service
that reads/writes to both customerData and billingData services). For example,
when the customerData update is accepted and the billingData update is rejected,
your service needs to know if it is important to reverse the customerData change.

Of course, there are cases where a service manages its own data and depends on other
data sources. And, in my experience, this scenario happens often. Another common
case is that you will want to keep a local cached copy of data you received from
another source. This can speed performance and ease traffic for widely used
resources. But copies are always just that—copies. When someone asks you for “the
most recent copy” of the data, you may need to reach out and fetch an updated ver‐
sion of the record you currently have stored locally.

Data Is Evidence of Action
An important principle for those writing data-centric interfaces is the “Data Is Evi‐
dence of Action” mantra. Data is the by-product of some action that was performed.
For example, when creating or updating a resource, data properties are created or
modified. The data is evidence left behind by the create and update actions. Do this
lots of times (e.g., many changes from many client applications), and you get a collec‐
tion of actions. With this collection of actions in place, it is possible to ask questions
about the evidence—to send queries. This is the key value of data stores: they provide
the ability to ask questions.

When viewed as “evidence of action,” data becomes a kind of witness to things hap‐
pening on the web. The most accurate witness is one that reflects the best possible
evidence. On the web, the best possible evidence is the HTTP exchanges themselves.
The best storage format is the HTTP messages (both metadata and body) themselves.
The ability to inspect and possibly replay HTTP exchanges makes for a powerful

Supporting Distributed Data | 41

storage platform. There is even a document format designed to properly capture
HTTP messages—the HTTP Archive (HAR) format.

The */http Media Types
There is a long-standing (but rarely used) media type designed to capture and store
HTTP messages directly. It is the message/http media type. There is also a media
type defined to capture a series of HTTP requests and responses as a group: the appli
cation/http media type.

These media types, along with the HTTP Archive (HAR) format, offer great options
for accurately capturing and storing HTTP exchanges.

The challenge is that direct HTTP messages (HAR files and */http messages) are dif‐
ficult to query efficiently. For that reason, you might want to store the evidence from
HTTP exchanges in a more query-engine friendly format. There are many possible
store-and-retrieve data systems to choose from. Some focus on making it easy to
write data; most focus on making it easy to query data. The key point here is to keep
in mind that all these storage systems are ways to optimize the management of the
evidence. They are a new representation of the actions on the web.

To sum it up, for web-based services, you should be sure to capture (and make query-
able) all the evidence of action. That means complete HTTP messages, including
metadata and data. The medium you choose to do this (files, documents, rows, etc.) is
not as important as maintaining the quality of the information over time.

Outside Versus Inside
No matter the data storage or query formats you use in your APIs, it is important that
your internal data model not “leak out” into the service interface. In 2016, I shared an
axiom on Twitter to help people remember the importance of capsulation in general:

Your data model is not your object model is not your resource model is not your repre‐
sentation model.

It is worth reemphasizing this axiom when talking about services that are directly
responsible for storing and managing data. The data model you are using on the
inside—that is, the names and locations of data properties, their grouping into tables,
collections, etc.—should remain independent of the model you are using for
document-style messages on the outside. This helps maintain a loose coupling
between storage and interface details, which can lead to a more reliable and stable
experience for both API consumers and producers.

For example, a service interface might offer three types of resources: user, job-type,
and job-status. Without knowing anything about internal storage, it would be easy

42 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/YvGqi
https://oreil.ly/ALeUe
https://oreil.ly/gwtKt
https://oreil.ly/gwtKt
https://oreil.ly/aPhMk

for API consumers to assume there are three collections of storage: ones that match
the three resources types mentioned previously. But, it might be that job-status is
just a property of job-type. Or that both job-type and job-status are both stored
in a name-value collection that also stores other, similar information, like user-
status, shipping-status, and more. The point is we don’t know for sure what the
storage model is like. And that should not matter to any API consumer.

We also don’t know what storage technology is used to manage the example data just
mentioned. It might be a simple file system, a complicated object database, or a col‐
lection of raw HTTP exchanges. And, more importantly, it does not matter (again) to
the API consumer. What matters is the data properties that are available and the
manner in which interface consumers can access (and possibly update) that data. The
read and write details should not change often—that’s an interface promise. But the
storage technology can change as frequently as service implementers wish, as long as
they continue to honor the interface promises.

This all adds up to another key principle for those creating data-centric services:
spend a good deal of time thinking about the outside (interface) promises. These are
promises that need to be kept for a long time. Conversely, don’t worry too much
about the inside (internal) technology details. They can (and probably will) change
frequently based on technology trends, service availability, costs, and so forth.

Read Versus Write
When it comes to distributed data, the rules for reading data and writing data are
fundamentally different. For example, most of the time data writes can be safely
delayed—either by design or just through the normal course of the way messages are
exchanged on the web. But delayed reads are often noticed more readily by API con‐
sumers and can directly affect the perceived speed and reliability of the data source.
This is especially true when multiple data sources are used to complete a read query.

The greater the distance (either in space or time) the data needs to travel, the more
likely it will be that API consumers will perceive the delays. The good news is that
most API consumers can tolerate delays of close to one second without any major
adverse effects. The truth is that all queries take time, and no response is “instantane‐
ous.” The reality is that most responses are short enough that we don’t notice (or don’t
care).

In fact, the best way to implement responses for data reads is to serve up the solution
without involving the network at all. That means relying on local cached copies of
data to fulfill the query. This reduces the reliance on the network (no worries about
the inability to reach a data source) and limits the response time to whatever it takes
to assemble the local data that matches the query. See Recipe 6.9 for more on this.

Supporting Distributed Data | 43

It is also worth pointing out that humans typically have a higher tolerance for delays
than machines. That means response delays for M2M interactions can be more trou‐
blesome than those for machine-to-human interactions. For that reason, it is wise to
implement M2M interactions with the possibility of response delays in mind; plan
ahead. Recipes 6.9 and 6.12 are possible ways to mitigate the effects of delayed
responses for data-centric services.

Since read delays are more noticeable, you need to account for them in your interface
design. For example, if some queries are likely to result in delayed responses (e.g., a
large collation of data with a resulting multigigabyte report), you should design an
interface that makes this delay explicit. For HTTP-based interfaces, that means mak‐
ing the 202 Accepted response along with follow-up status reports part of the design
(see Recipe 6.5 for details).

When it comes to writing data, while delays are undesirable, the more important ele‐
ment is to maintain data integrity in the process. It is possible that a single data write
message needs to be processed by multiple services (either inline or parallel) and each
interaction brings with it the possibility of a write error. In some cases, failure at just
one of the storage sources means that all the other storage sources need to reject (or
undo) the write, too. For this reason, it is best to limit the number of targets for each
write action. One is best; any more than that are a problem. See Recipes 6.5, 6.8, and
6.13 for more on how to improve the write-ability of your service interfaces.

Robust Data Languages
The history of data storage and querying has provided an excellent list of data tech‐
nology platforms. However, at least until recently, most data languages and platforms
have ignored the unique requirements of the web environment. A few data languages
are well-designed for widely distributed data, and some of them are very effective on
the web where the sources are not only many but may also exist far from each other.

For the most part, a set of languages known as IRQLs are the most effective to use for
reading data on the web. These languages are optimized for matching search criteria
and returning a set of documents (or pointers to documents). They are also opti‐
mized for searching a large set of data, since most IRQLs are actually collections of
indexes to external storage. For these reasons, it is a good idea for any service that
supports data queries over HTTP to implement some type of IRQL internally. This is
especially true if the API only needs to support reads and not writes. But even in
cases where the interface supports both reading and writing data, a solid IRQL imple‐
mentation can pay off since most data requests are reads anyway.

44 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/GIqet

Database Queries Versus Information Retrieval Queries
There is an important difference between data query languages like SQL (Structured
Query Language) and information retrieval query languages like Apache Lucene.
Database languages are designed to return definitive results about some set of “facts”
stored in the database. Information retrieval query languages (IRQLs) are designed to
return a set of documents that match some supplied criteria. For the set of recipes in
Chapter 6, we’ll be focused primarily on the second type of query languages—infor‐
mation retrieval. Of course, we can (and often do) use database query languages to
search for “documents” (usually rows) that match supplied criteria, too.

Information retrieval engines
There are a handful of candidates for an IRQL for your interfaces. One of the best
known is the Apache Lucene project. The Lucene engine is pretty low-level and a bit
of a challenge to implement on its own. But there are quite a few other implementa‐
tions built on top of Lucene that are easier to deploy and maintain. As of this writing,
the Solr engine is the one I see most often in use.

Other IRQL options
Along with a solid IRQL for reading data, most services will also need to support
writing data. While a few IRQL-like engines support both reading and writing—e.g.,
GraphQL, SPARQL, OData, and JSON:API—it is a good idea to consider using a dif‐
ferent technology when supporting data writes.

SQL-like data engines
Usually, simple data storage can be handled by implementing a file-based storage sys‐
tem (e.g., each record is a file in the system). However, if the service needs to be able
to scale up past a handful of users or a few hundred documents, it is better to imple‐
ment some kind of data storage optimized for writes. The common uses rely on some
SQL-based data technology like MongoDB, SQLite, PostgreSQL, and others.

Streaming data engines
If you need to handle a large number of data writes per second (e.g., thousands), you
probably want to implement a streaming data engine such as Apache Kafka, Apache
Pulsar, or other alternatives.

Above all, it is important to see all these options as “behind-the-scenes” details. A
well-designed interface for data-centric services will not expose the internal data tech‐
nology in use. That makes it possible to update the internal technology as needed
without adversely affecting the external API (see “Read Versus Write” on page 43).
For example, you might start with a file-based data management system, add an IRQL

Supporting Distributed Data | 45

https://oreil.ly/G6KlH
https://oreil.ly/5DJJ1
https://oreil.ly/5DJJ1
https://oreil.ly/KwCT5
https://oreil.ly/SGycR
https://oreil.ly/XaTMD
https://oreil.ly/mAsf7
https://graphql.org
https://oreil.ly/cSzFt
https://www.odata.org
https://jsonapi.org
https://oreil.ly/q7fM0
https://oreil.ly/0asA4
https://oreil.ly/5rcSL
https://kafka.apache.org
https://pulsar.apache.org
https://pulsar.apache.org

to support additional queries, later move to SQL-based, and eventually go to a
streaming data engine. Throughout that internal technological journey, the external
interface should not change. See Recipes 6.1, 6.4, and 6.7 for more on this topic.

Empowering Extensibility with Hypermedia Workflow
The web has always been a place where content servers could be easily connected to
each other (via links) to form a larger offering. This ability to simply link to another
website without asking for permissions or having to make special coding, layout, or
content changes was one of the goals of those credited with creating the World Wide
Web (WWW). For this reason, Tim Berners-Lee’s proposal for his WWW informa‐
tion system concludes, “We should work toward a universal linked information sys‐
tem, in which generality and portability are more important than fancy graphics tech‐
niques and complex extra facilities.” Chapter 7 has recipes aimed at helping to do just
that.

While Berners-Lee (and Ted Nelson before him) focused on ways to link documents
together in a seamless way, this same notion of easy connections with few barriers can
be applied to services, too. By linking multiple services together, we can solve a partic‐
ular need. For example, the steps needed to perform an online store checkout might
include actions like computeTotals, applyTax, arrangePayment, scheduleShipping,
and sendConfirmation.

When working in local source code, these actions are usually expressed as operations
within the codebase and as a series of sequential steps to be executed in order. How‐
ever, some languages also support the use of parallel processing to execute a collec‐
tion of actions at the same time. This can greatly improve the scalability of the work‐
flow process but requires that both the workflow designers and the service designers
have agreements in place that clearly separate parallel from sequential tasks. Even
when all tasks might be eligible for parallel execution, the workflow itself may require
a special order of events. It is difficult, for example, to compute the taxes on a shop‐
ping order before you have finalized the contents of the shopping basket.

In the case of web-based services, each function needs to be treated as if it is run in a
separate process at a different location. This distributed nature of the web means
services can’t be counted on to share data models, storage systems, or programming
languages. The only thing they share is an agreed interface. The common interface on
the web is defined by the HTTP specification. But this is a very low-level agreement.
For efficient work to be done, services need to share more than the transfer protocol.
They need to share a kind of language for coordinating services.

46 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/CwzAm
https://oreil.ly/CwzAm

Choreography, Orchestration, and Hypermedia Workflow
When talking about coordinating services, it is common to encounter the notions of
choreography and orchestration. Each represents architectural points of view on how
to design and implement service coordination. In my experience, the web offers a
third, more direct (and, I think, more powerful) point of view on coordination: that
of describing workflows as declarative documents that, like HTTP, provide a consis‐
tent interface that services can use to interact with each other. I’ll get to this hyperme‐
dia workflow shortly. First, it is worthwhile to review just what choreography and
orchestration offer and how they differ from a hypermedia approach.

Centralized orchestration
The service orchestration model is a centralized approach to defining workflows in a
single context and then submitting that document to a workflow “engine.” This has
the effect of creating an integration programming model (e.g., BPEL) that solution
designers can use to connect services in a logical execution flow. The orchestra meta‐
phor is a common way to talk about this approach since there is a single “conductor”
(the engine) that leads a group of people all working from essentially the same
agreed-upon “music” (the workflow document).

Orchestration History
Service orchestration has a long and varied history. Probably the best known “origin
story” for service orchestration comes from XLang, Web Services Flow Language
(WSFL), and its standardized offshoot Business Process Execution Language or WS-
BPEL. These are designed to support describing a series of workflow steps and deci‐
sions and then controlling the execution of that workflow by submitting the docu‐
ment to a workflow “engine,” such as Microsoft’s BizTalk, IBM’s WebSphere, Apache
ODE, and others.

The advantage of the orchestration approach is that the solution is clearly spelled out
in script or code. This makes it easy to reason about, validate, and test the workflow
ahead of time. The use of a workflow engine also makes it easier to monitor and man‐
age the workflow process. There are quite a few platforms and programming suites
designed to support BPEL and similar languages.

There are also challenges to the centralized approach. Chief among them is the
dependence on a central execution engine. If that engine is down or unreachable, the
entire workflow system can grind to a halt. This can be mitigated by running the
workflow engine within a cluster (to handle failing machines) and at multiple loca‐
tions (to handle network-related problems). Another challenge for reliance on the

Empowering Extensibility with Hypermedia Workflow | 47

https://oreil.ly/3JQaa
https://oreil.ly/Wd02n
https://oreil.ly/3UFgR
https://oreil.ly/3UFgR
https://oreil.ly/haECS
https://oreil.ly/rdnKc
https://oreil.ly/rdnKc
https://oreil.ly/BYYLr
https://oreil.ly/9QERU
https://oreil.ly/SIFkR

orchestration approach is that it often assumes synchronous processing and may
encourage a more tightly coupled implementation.

Lastly, the orchestration model also assumes a kind of single point of contact. Usually,
services don’t talk to each other directly, they talk to the orchestration engine. More
precisely, the engine makes calls to the services, and the engine composes its own
resulting solution.

Orchestrating the Cloud
Most cloud services today offer some flavor of service orchestration. Amazon Web
Services provides AWS Step, Google has Workflows, and Microsoft relies upon Azure
Cloud Automation.

The drawbacks of failing central engines and tightly coupled workflow definitions can
be handled by creating a central repository for the workflow documents and distribut‐
ing the processing of those documents. This distributed execution approach is very
similar to the other common way to design workflows: service choreography.

Stateless choreography
Typically, choreography is defined as a kind of “dance” of services. Each service
knows its own “moves,” and each acts as an independent entity that interacts with
others. With choreography, the workflow is a by-product of the interactions between
existing services. Workflow is an “emergent” behavior.

Let’s Dance
The dance metaphor appears often in descriptions of the choreography approach to
workflow. In fact, this dance theme is so strong with the choreography-style workflow
crowd that an entire programming language designed for integration work was
released in 2017 called Ballerina.

There are definite advantages to the emergent choreography model. First, individual
services don’t need to know about the big picture; they just need to know how to
accomplish their own tasks. Composing workflow results in a more loosely coupled
solution, and loosely coupled solutions are usually more resilient and easier to suc‐
cessfully modify over time. That can make it easier to replace parts of the solution
over time without disrupting others in the process. This can result in a flexible, resil‐
ient workflow environment.

Of course, there are drawbacks, too. One challenge to working in a choreographed
world is that it can be difficult to monitor individual workflow progress. Since the

48 | Chapter 2: Thinking and Designing in Hypermedia

https://oreil.ly/49G4o
https://oreil.ly/z8sOz
https://oreil.ly/l2LX7
https://oreil.ly/l2LX7
https://oreil.ly/ibzLh

solution emerges from a set of individual, stateless tasks, there is no single point of
control where you can be alerted of problems in the execution of a job.

It can also be hard to assess the overall health of your workflow ecosystem. Are there
certain tasks (e.g., sending email) that fail for all jobs? Or are there problems with all
jobs that send emails to a single, problematic address? Are some machines perform‐
ing poorly no matter what services they are hosting? Are some services unreachable
due to network conditions?

Dancing in the Clouds
The major cloud vendors all offer their own version of service choreography. Google
encourages the use of their Pub/Sub and Eventarc services. Microsoft has Event Grid,
and AWS encourages the use of its Simple Notification Service (SNS) and Simple
Queue Service (SQS) tools to build choreographed workflows.

The monitoring challenge can be handled by creating a progress resource for each job
that is easy to locate and view on demand. You can then instruct services to emit pro‐
gress reports to the associated resource whenever they complete their task.

Both centralized orchestration and point-to-point choreography have their advan‐
tages and drawbacks. In general, workflows without many steps and few branching
options are well-serviced with an orchestration approach. Define the work in a single
place (a document) and use that document as the execution script for the solution.
Often, this can be written up in the native source code (see Recipe 7.3).

However, if the workflows are quite involved, it can be more beneficial to use the
choreography approach. As the number of steps goes up, the sequential approach of
most orchestration engines becomes a liability. Also, extensive branching points in
workflows can make it hard to reason about outcomes and difficult to “roll back”
problematic workflows. The choreography approach makes it easier to handle asyn‐
chronous workflows, support individual rollbacks, and can remove the need for
if .. then .. else–style branching. This assumes that each service works inde‐
pendently and that there is little state information shared between them. Choreo‐
graphed solutions are sometimes expressed as source code but can also be expressed
in a domain-specific language (DSL) tuned for the task at hand. In this book, I’ll
show you a DSL designed just for this purpose (see Recipe 7.4).

Hypermedia workflow
There is, however, another approach that I have found quite reliable; one that
depends on the use of hypermedia controls (forms and links) that describe the details
of service interactions at runtime. I have always called this hypermedia workflow. This
approach works well both for cases with just a few steps and ones with several

Empowering Extensibility with Hypermedia Workflow | 49

https://oreil.ly/joyxW
https://oreil.ly/2EV9S
https://oreil.ly/KlTjJ
https://oreil.ly/JJ9dm
https://oreil.ly/ky0aH
https://oreil.ly/ky0aH

involved processes. It takes advantage of the independent, parallel processing of chor‐
eography as well as the centralized approach of orchestration.

Jazz as a Workflow Analogy
Just as it has become popular to use orchestra and dance analogies to talk about ser‐
vice coordination, I have been using jazz music as a way to talk about hypermedia
workflow. With orchestration, there is “someone in charge.” With choreography, it is
important that everyone knows their part and works closely with each other to reach
the final outcome. With jazz music, everyone has a basic idea of what the song is and
they all get to contribute in their own way to create a final performance.

The key to designing and implementing hypermedia workflows is to make sure each
service that is enlisted in the flow has a composable service interface (see Recipe 7.1)
that supports the following actions:

Execute

Do the work (e.g., computeTax, createCustomerResource, etc.).

Repeat

Do the same work again in case something didn’t work the first time.

Revert

Undo the work in case there was an error somewhere else.

Cancel

Stop processing the task and undo any previous work.

When each service (called a task) supports these actions, it is possible to collect them
together in a job. Workflow jobs run all tasks in parallel and offer two other impor‐
tant actions:

Continue

Pick up the work where it last left off.

Restart

Start from the very beginning again.

Cancel

Stop processing the job and tell all tasks to undo any previous work.

There are some other details for this workflow language regarding shared state and
time-outs that are covered in several recipes in Chapter 7. The important thing to
keep in mind is that the workflow interface described here is very simple and usually
straightforward to implement for an individual service. There are definitely chal‐
lenges. For example, supporting the Revert action has implications if the service calls

50 | Chapter 2: Thinking and Designing in Hypermedia

other services under the covers. But that set of details can be sorted out within source
code and does not need to be exposed as part of the service interface.

Another advantage of relying on a hypermedia workflow language is that all the
details of a workflow can be expressed as one or more documents instead of source
code or script. Most programming languages are imperative. They describe how
something is done. Hypermedia documents are, however, declarative. Declarative lan‐
guages describe what needs to be done without explicitly specifying a step-by-step
process.

This ability to describe actions as tasks, and flows as jobs, makes it possible to write
composable services that can be successfully enlisted into a workflow without worry‐
ing about how all the parts will interact. Just like HTTP, hypermedia workflow stand‐
ardizes the external interface and allows services to use any internal programming
languages and paradigms they wish.

Workflow Challenges
The challenges for implementing web-based workflows are many. But they break
down into a relatively small set of tractable problems. The one’s I’ll review here are:

• Sharing state, not data models
• Constraining workflows
• Observing workflows
• Time as a workflow element
• Dealing with workflow errors

Sharing state, not data models
A key stumbling block for building robust, scalable workflow systems for the web has
to do with dealing with the data that needs to pass between independent services.
Most solutions I’ve seen assume a shared data model (e.g., passing parameters as
strongly typed schema) or even shared data storage (e.g., all services read the same
SQL database tables). Neither of these work well.

A better approach is to share properties using a simple document model instead (see
Recipe 7.2). In these cases, data values are passed as strongly typed documents
(HTML, Collection+JSON, SIREN, HAL, etc.) and may contain all types of data ele‐
ments. Just what data properties appear in these documents is governed by the
semantic profiles (Recipe 3.4) and vocabularies (Recipe 3.3) established ahead of
time.

Sharing these documents can be accomplished using the FORM affordance (Recipe
3.7) or a shared addressable resource itself.

Empowering Extensibility with Hypermedia Workflow | 51

Successful workflow implementations support piping data between services without
constraining the types of data to be shared.

Constrained workflow
When you think of workflow as a set of constraints (execute, repeat, reverse, con‐
tinue, and restart), you can then design and implement services in consistent ways as
long as they agree to the rules ahead of time. Just as HTML has a set of rules for
hypermedia affordances (HTML.A, HTML.FORM, HTML.IMG, and HTML.LINK)
with clearly defined semantics and outcomes, workflow can be designed as a set of
affordances (execute, etc.) with clearly defined semantics and outcomes.

A reliable workflow system defines the shared interface between services as a general
set of affordances.

Observable workflow
Another important element of a successful workflow system is the ability to see what
is going on at runtime (see Recipe 7.7). This observability is very common in shared
flow systems like DevOps pipelines and can be just as valuable for general runtime
workflow, too. You also need a way to intervene in a workflow to fix problems and, if
appropriate, continue or restart a job or—if all else fails—cancel the job
completely.

A well-developed workflow system provides a set of dashboards that show the pro‐
cess of running workflows.

Time as a workflow element
Any system that attempts to coordinate services needs to keep track of the time it
takes to accomplish a task or complete a job. Of course, some processes take more
time to complete. Computing net present value or working through a set of complex
computations may take minutes or maybe hours. Workflow systems need to allow for
this (see Recipe 7.15).

Healthy systems set limits (maxTTL) to the amount of time alloted for work. Pass that
limit and you need to cancel the process.

Dealing with workflow errors
Finally, workflow processes need to account for runtime errors caused by network
conditions (see Recipe 7.16) or other local problems (see Recipe 7.17). There are ways
to automate some of these responses, but sometimes machines can’t work out a solu‐
tion. When that happens, you need a way to “call for help” (see Recipe 7.18) to some
human somewhere who will make the right call on whether to continue or cancel
the process.

52 | Chapter 2: Thinking and Designing in Hypermedia

Quick Summary
Now that we’ve explored the background and history underpinning the design, client,
service, data, and workflow recipes in this book, it’s time to jump directly into the
details of each to help us create resilient and robust network-based solutions.

Empowering Extensibility with Hypermedia Workflow | 53

PART II

Hypermedia Recipe Catalog

No pattern is an isolated entity. Each pattern can exist in the world, only to the extent that is
supported by other patterns.

—Christopher Alexander

CHAPTER 3

Hypermedia Design

The problem is essentially the one discussed by science fiction writers: “how do you get com‐
munications started among totally uncorrelated ‘sapient’ beings?”

—J.C.R. Licklider, 1966

A foundational element of any system-level design is a set of shared principles or
understandings about how parts of the system interact. That is the overarching prob‐
lem we’ll address in this chapter—how to design systems where machines built by dif‐
ferent people who have never met can successfully interact with each other. The rec‐
ipes in this chapter focus on the design aspects of hypermedia systems. To do that,
you’ll find recipes that explore the relationship between media types, hypermedia
controls, data properties, and semantic profiles that help bring them together (see
Figure 3-1).

If you’re interested in the background concepts and technologies
behind designing hypermedia-driven solutions, see “Establishing a
Foundation with Hypermedia Designs” on page 21.

For communications within the web, HTTP is at the heart of this shared understand‐
ing. HTTP sets the rules—and the expectations—for sending data between services.
And, despite the fact that HTTP’s history dates back to the mid 1980s, it is still ubiq‐
uitous and relevant after more than 30 years.

57

Figure 3-1. Hypermedia design recipes

It is important to remember that HTTP is the higher-level protocol agreement
between machines on the network. Lower-level protocols, like TCP, IP, and UDP,
provide the backbone for moving bits around. One of the things I find most interest‐
ing about this low-level communications system is that it works because the commu‐
nication components do not understand the meaning of the data they ship around.
Meaning is separated from the message.

The notion that information can be dealt with independent of the messages used to
share that information is a key understanding that makes M2M communication pos‐
sible “at scale.” Dealing with information within its own level is also important. HTTP
offers a great example of this using media types. I can send you company sales data in
an HTML message. I can send you the same information in a CSV message, or as a
plain text message, and so forth. The data is independent of the media type.

You’ll find this notion of separation throughout the recipes in this chapter. While
protocol and media type are well-established forms of separation, the recipes in this
chapter also rely on an additional form—that of separating vocabulary from the mes‐
sage format. Vocabulary is the set of rules we use to communicate something impor‐
tant. Communication works best when we both share the same vocabulary.

58 | Chapter 3: Hypermedia Design

https://oreil.ly/qypkt
https://oreil.ly/LpNOn
https://oreil.ly/ES6sA

For example, you can imagine two animated machines talking to each other:
“Hey, Machine-1, let’s talk about health care systems using the HL7 FHIR Release 4
vocabulary.”
“OK, Machine-2. But can we please use RDF to send messages instead of XML?”
“Sure, Machine-1. As long as we can use HTTP and not MQTT.”
“Agreed!”

Notably, the FHIR platform recognizes that FHIR information can
be shared using XML, JSON, and RDF message formats—a clear
nod to the importance of separating domain-specific information
from the formats used to share that information.

Another important shared understanding for scalable systems is agreement on “how
we get things done.” In this case, the way things get done is through hypermedia.
Hypermedia controls, such as links and forms, are used to express the runtime meta‐
data needed to complete a task. The controls themselves are structured objects that
both services and clients understand ahead of time. However, the contents of that
control—the values of the metadata properties—are supplied at runtime. These
include the data properties needed for a particular action, the protocol method to use
to execute the action, and the target URL for that action. All are decided at runtime.
The client doesn’t need to memorize them—it receives them in the message. Basically,
the hypermedia controls are another level of separation. In fact, the JSON-LD mes‐
sage format relies on a separate vocabulary (Hydra) to express the hypermedia infor‐
mation within a JSON-LD message. You’ll find a few recipes here that acknowledge
the importance of hypermedia for RWAs. You’ll also find several specific hypermedia
recipes in the following chapters covering specific implementation patterns.

Finally, you’ll find some recipes that are specific to successful communication over
HTTP. These recipes cover things like network promise (safety and idempotence) and
the realities of supporting M2M communications over unreliable connections at long
distances. Lucky for us, HTTP is well suited for resolving broken connections—it was
designed and built when most HTTP conversations were conducted over relatively
slow voice telephone lines. However, for HTTP to really work well, both clients and
servers need to agree on the proper use of message metadata (e.g., HTTP headers),
along with some added support for how to react when network-level errors occur.

So, this design chapter focuses on recipes that acknowledge the power of separate lay‐
ers of communication, the role of hypermedia in communicating how things get done,
and some shared understanding on how to ensure reliable communications when
errors occur.

Hypermedia Design | 59

https://oreil.ly/vQUQ6
https://oreil.ly/vQUQ6
https://json-ld.org
https://oreil.ly/W32Sr

3.1 Creating Interoperability with Registered Media Types
A key to establishing a stable, reliable system is to ensure long-term interoperability
between services. That means services created years in the past are able to success‐
fully exchange messages with services created years in the future.

Problem
How do you design services that have a high degree of interoperability well into the
future?

Solution
The best way to ensure a high level of long-term interoperability between services is
to establish stable rules for exchanging information. On the web, the best way to do
that is to select and document support for one or more open source media type for‐
mats for data exchange. For example, the HTML media type offers a strongly typed
format that HTML browsers can “bind” to without needing to understand the con‐
tents of the HTML document. In fact, the contents of a document can change over
time (adding paragraphs, moving text, links, forms, etc.), but the HTML browser
does not need to be updated. Using HTML ensures future compatibility.

A good source for long-term, stable media types is the Internet Assigned Numbers
Authority (IANA). Viable candidate media types for long-term support of RWAs are
unstructured media types like XML and JSON, as well as structured media types such
as HTML, Collection+JSON, UBER, HAL, and SIREN. See Appendix C for a list of
viable media types at the time of this book’s release.

See Recipe 3.2 for more on the difference between structured and
unstructured media types.

Discussion
When you create services, you should document which registered media types
(RMTs) your service can support. It is recommended that your service support more
than one RMT, and that you allow service consumers to both discover which RMTs
your service supports and how they can indicate their preference when exchanging
messages (see Recipe 4.6).

60 | Chapter 3: Hypermedia Design

https://oreil.ly/rMOws
https://oreil.ly/rMOws

When I release a service, I almost always add HTML as one of the
designated message formats. It has been around for 30+ years, you
can use any common browser as a client for the service (great for
testing), and there are enough parsers and other HTML tooling to
make it relatively easy for consumers of your service to be able to
exchange data with you.

Additional recommendations for candidate media types are: 1) they should support
hypermedia within the message (see Recipe 3.5) and 2) they should support custom
extensions (e.g., your ability to safely add new features to the format without breaking
any existing applications). This last point will come in handy when you are stuck sup‐
porting a format that has fallen out of favor and you need to make some modifica‐
tions to extend the life of your service.

It is also possible to create your own media type format for your services. That can
work if: 1) your universe of service API consumers is relatively limited (e.g., within
your own company), 2) your universe of service API consumers is crazy large (e.g.,
Google, Facebook, Amazon, etc.), or 3) your services are the leader in a vertical (e.g.,
document management, financial services, health care, etc.). If your efforts do not fall
into one of these categories, I recommend you do not author your own media type.

So You Want to Create Your Own Media Type, Eh?
If you decide to author your own custom media type, you should treat it as if it will
become a popular, public format. That means documenting it and registering it prop‐
erly. You also need to be ready to support any community that grows up around your
media type format—including example apps and other tooling. Finally, you need to
be committed to doing this work for a long time. Also, keep in mind that some people
might build their own services using your format, and they will deserve the proper
support well into the future.

Over the years, I’ve authored close to a dozen original media types. Only a few have
ever garnered much attention. But I still try to keep up my responsibilities to all of
them.

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.6, “Managing Representation Formats at Runtime”

3.1 Creating Interoperability with Registered Media Types | 61

https://oreil.ly/8u7a8
https://oreil.ly/8u7a8

3.2 Ensuring Future Compatibility with
Structured Media Types
An important foundational element in the design of RWAs is supporting future com‐
patibility. This means making it possible for services written in the past to continue to
interact with services well into the future. It also means designing interactions so that
it is unlikely that future changes to already-deployed services will break other existing
services or clients.

Problem
How do you design M2M interactions that can support modifications to in-
production services that do not break existing service consumers?

Solution
To support nonbreaking changes to existing services, you should use structured media
types (SMTs) to pass information back and forth. SMTs make it possible to emit a sta‐
ble, nonbreaking message even when the contents of that message (e.g., the properties
of a record, list of actions, etc.) have changed. The key is to design interactions with
the message shared between machines maintaining the same structure even when the
data conveyed by that message changes. See the example for details.

A structured media type provides a strongly typed format that does not change based
on the data being expressed. This is in opposition to unstructured message formats
like XML and JSON. See the example for details.

It is a good idea to use well-known media types in your interactions. Media types reg‐
istered through the IANA are good candidates. For example, HTML is a good exam‐
ple of an SMT. Other viable general-use SMT formats are Collection+JSON and
UBER. See “Viable Registered Media Types for RESTful Web APIs” on page 421 for a
longer list of media types to consider.

Example
An SMT provides a strongly typed format that does not change based on the data
being expressed. Here’s an example of a simple message expressed as HTML:

<ul name="Person">
 <li name="givenName">Marti
 <li name="familyName">Contardi

 ...
<ul name="Person">
 <li name="givenName">Marti
 <li name="familyName">Contardi

62 | Chapter 3: Hypermedia Design

https://oreil.ly/7FTks

 <li name="emailAddress">mcontardi@example.org

The structure of this message can be expressed (in an overly simplified way) as: “one
or more li elements enclosed by a single ul element.” Note that adding more content
(for example, an email address) does not change the structure of the message (you
could use the same message validator), just the contents.

Contrast the preceding example with the following JSON objects:

{"Person" : {
 "givenName": "Marti",
 "familyName": "Contardi"
 }
}
 ...
{"Person" : {
 "givenName": "Marti",
 "familyName": "Contardi",
 "emailAddress": "mcontardi@example.org",
 }
}

The JSON structure can be expressed as: “a JSON object with two keys (givenName
and familyName).” Adding an email address to the message would result in a change
in the structure of the JSON message (e.g., requires a new JSON schema document) as
well as a change in content.

Discussion
The important element in this recipe is to keep the content of the message loosely
coupled to the structure. That allows message consumer applications to more easily
and consistently validate incoming messages (to “bind” to the message type)—even
when the contents of those messages change over time.

Another way to think about this solution is to assume that the first task of message
consumer applications is to make sure the message is well-formed—that it complies
with the basic rules of how a message must be constructed. It is, however, a different
task to make sure the message is valid—that the message content follows established
rules for what information needs to appear within the messages (e.g., “all Person mes‐
sages MUST include a givenName, familyName, and emailAddress property”).

To ensure future compatibility, the first step is to make sure negotiation messages can
remain well-formed even when the rules for what constitutes a valid message change
over time.

3.2 Ensuring Future Compatibility with Structured Media Types | 63

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.6, “Managing Representation Formats at Runtime”

3.3 Sharing Domain Specifics via Published Vocabularies
Services with a well-managed vocabulary are more likely to be understood by others
and therefore more likely to gain wider adoption. Just like you need to support regis‐
tered, structured media types to ensure the long-term compatibility and reliability of
your service, you also need to support stable, consistent domain specifics to ensure
long-term viability for both service producers and consumers.

Problem
How can you make sure your service’s data property names will be understood by
other services—even services that you did not create?

Solution
To ensure that the data properties your service uses to exchange information are well
understood by a wide range of other services (even ones you did not create), you
should employ well-documented, widely known data property names as part of your
external interface (API). These names should already be defined in published data
vocabularies; if not, you should publish your data vocabulary so that others creating
similar services can find and use the same terms.

A good source of general-use published vocabularies for the web is Schema.org. It has
hundreds of well-defined terms that apply to a wide set of use cases and it continues
to grow in a well-governed way. There are other well-governed vocabulary sources
like Microformats.org and Dublin Core.

A word of caution. Some vocabularies, especially industry-specific
ones, are not fully open source (e.g., you must pay for access and
participation). I will also point out that some vocabulary initiatives,
even some open source ones, aim for more than a simple shared
vocabulary. They include architectural, platform, and even SDK
recommendations and/or constraints.
Your best bet for creating long-term support for interoperability is
to make sure any vocabulary terms you use are disconnected from
any other software or hardware dependencies.

64 | Chapter 3: Hypermedia Design

https://schema.org
https://microformats.org/
https://oreil.ly/aFW7i

As of this writing there are some industry-specific public vocabularies to consider,
too. Some examples are: PSD2 for payments, FHIR for health care, and ACORD for
insurance.

When you release your service, you should also release a document that lists all the
vocabulary terms consumed or emitted by your service along with links to proper
definitions. See Recipe 3.4 for more on how to properly document and publish your
vocabulary documents.

Example
When you have the option, you should use well-known terms in your service’s exter‐
nal API even when your own internal data storage system uses local or company-
specific terms.

For example, here’s a person record that reflects the terms used within a typical US
company:

{ "collection" : {
 "links": [
 {"rel": "self", "href": "http://api.example.org/persons"}
],
 "items" : [
 {
 "href": "http://api.example.org/persons/q1w2e3r4",
 "data" : [
 {"name": "fname", "value": "Dana"},
 {"name": "lname", "value": "Doe"},
 {"name": "ph", "value": "123-456-7890"}
]
 }
]
 }
}

And here’s the same record that has been updated to reflect terms available in the
Schema.org vocabulary:

{ "collection" : {
 "links": [
 {"rel": "self", "href": "http://api.example.org/persons"},
 {"rel": "profile", "href": "http://profiles.example.org/persons"}
],
 "items" : [
 {
 "href": "http://api.example.org/persons/q1w2e3r4",
 "data" : [
 {"name": "givenName", "value": "Dana"},
 {"name": "familyName", "value": "Doe"},
 {"name": "telephone", "value": "123-456-7890"}
]

3.3 Sharing Domain Specifics via Published Vocabularies | 65

https://oreil.ly/1BXOi
https://oreil.ly/AMxkP
https://oreil.ly/lfSCE

 }
]
 }
}

Note the use of the profile link relation in the second example. See Recipe 3.4 for
details.

Discussion
This recipe is based on the idea of making sure the data property terms are not tightly
coupled to the message format. It is, essentially, the flip side of Recipe 3.2. Commit‐
ting to well-known, loosely coupled vocabularies is also an excellent way to protect
your service from changes to any internal data models over time.

See Chapter 6 for more recipes on handling data for RWAs.

Constraining your external interfaces to use only well-known, well-documented
property names is one of the best things you can do to ensure the interoperability of
your service. This, along with publishing semantic profiles (see Recipe 3.4), make up
the backbone of large-scale information system management. However, this work is
not at all easy. It requires attention to detail, careful documentation, and persistent
support. The team that manages and enforces a community’s vocabulary is doing
important and valuable work.

One of the challenges of this recipe is that the public vocabulary for your services is
quite likely not the same as the private vocabulary. That private set of names is usually
tied to age-old internal practices, possibly a single team’s design aesthetics, or even
decisions dictated by commercial off-the-shelf (COTS) software purchased a long
time ago. To solve this problem, services need to implement what is called an “anti-
corruption layer”. There is no need to modify the existing data storage model or serv‐
ices.

It is important to document and share your service vocabulary. A good practice is to
publish a list of all the “magic strings” (see “Richardson’s Magic Strings” on page 15)
in a single place along with a short description and, whenever possible, a reference (in
the form of a URL) to the source of the description. I use the Application-Level Pro‐
file Semantics (ALPS) format for this (see Recipe 3.4).

66 | Chapter 3: Hypermedia Design

https://oreil.ly/pQkt2
https://oreil.ly/pQkt2

Here is an example ALPS vocabulary document:

{ "alps" : {
 "descriptor": [
 {"id": "givenName", "def": "https://schema.org/givenName",
 "title": "Given name. In the U.S., the first name of a Person.",
 "tag": "ontology"},
 {"id": "familyName", "def": "https://schema.org/givenName"
 "title": "Family name. In the U.S., the last name of a Person.",
 "tag": "ontology"},
 {"id": "telephone", "def": "https://schema.org/telephone",
 "title": "The telephone number.",
 "tag": "ontology"
 },
 {"id": "country", "def": "http://microformats.org/wiki/hcard#country-name",
 "title": "Name of the country associated with this person.",
 "tag": "ontology"
 }
]
 }
}

When creating RWA vocabularies, it is a good practice to identify a single preferred
source for term definitions, along with one or more “backup” sources. For example,
your vocabulary governance document guidance could read like the following:

“Whenever possible, use terms from Schema.org first. If no acceptable terms can be
found, look next to Microformats.org and then to Dublin Core for possible terms.
Finally, if you cannot find acceptable terms in any of those locations, create a new term
in the company-wide vocabulary repository at [some-url].”

Some additional notes:

Mixing terms
It is perfectly acceptable to mix vocabulary references in a single set of terms. You
can see in the preceding example that I included three terms from Schema.org
and one term from Microformats.org.

Limiting synonyms
Just as in real life, there can be multiple terms that mean the same thing, for
example, “tel” (from Microformats.org) and “telephone” (from Schema.org).
Whenever possible, limit the use of synonyms by adopting a single term for all
external uses.

Publishing vocabularies
See Recipe 3.4 on how to publish this document and retrieve it on the web.

3.3 Sharing Domain Specifics via Published Vocabularies | 67

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.5, “Negotiating for Profile Support at Runtime”

3.4 Describing Problem Spaces with Semantic Profiles
Along with decoupling your well-defined data property vocabulary from your mes‐
sage structures, it is important to also put effort into defining how the data properties
get passed back and forth. This is the work of “describing the problem space.” Prob‐
lem spaces are used in games and interactive artwork as a way to place “guide rails”
on a set of related activities. Problem spaces are the “rules of the game,” so to speak.
RWAs rely on the “rules of the game” as well.

The Problem
How can you provide a detailed description of all the possible data properties,
objects, and actions supported by your services in a way that is usable both at design
time and at runtime?

The Solution
To make sure developers can quickly and accurately understand the data exchanges
and actions supported by your service, you can publish a semantic profile document
(SPD). SPDs contain a complete list of all the data properties, objects, and actions a
service supports. Semantic profiles, however, are not API definition documents like
OpenAPI, WSDL, AsyncAPI, and others. See “API Definition Formats” on page 422 in
the appendix for a longer list of API definition formats.

SPDs typically include all three elements of information architecture: ontology,
taxonomy, and choreography.

See “The Power of Vocabularies” on page 14 for a discussion of the
three pillars of IA.

68 | Chapter 3: Hypermedia Design

Two common SPD formats are Dublin Core Application Profiles (DCAP) and
Application-Level Profile Semantics (ALPS). Since I am a coauthor on ALPS, all the
examples, I’ll show here use the ALPS format. See “Semantic Profile Document For‐
mats” on page 423 in Appendix C for a longer list.

Example
Here is an example of a valid ALPS semantic profile document. Notice that the three
pillars of Morville’s information architecture (ontology, taxonomy, and choreogra‐
phy) are represented in this example (see “The Power of Vocabularies” on page 14 for
details):

{ "$schema": "https://alps-io.github.io/schemas/alps.json",
 "alps" : {
 "title": "Person Semantic Profile Document",
 "doc": {"value":
 "Simple SPD example for http://webapicookbook.com[Web API Cookbook]."},
 "descriptor": [
 {"id": "href", "def": "https://schema.org/url",
 "tag": "ontology"},
 {"id": "identifier", "def": "https://schema.org/identifier",
 "tag": "ontology"},
 {"id": "givenName", "def": "https://schema.org/givenName",
 "tag": "ontology"},
 {"id": "familyName", "def": "https://schema.org/familyName",
 "tag": "ontology"},
 {"id": "telephone", "def": "https://schema.org/telephone",
 "tag": "ontology"},

 {"id": "Person", "tag": "taxonomy",
 "descriptor": [
 {"href": "#href"},
 {"href": "#identifier"},
 {"href": "#givenName"},
 {"href": "#familyName"},
 {"href": "#telephone"}
]
 },
 {"id": "Home", "tag": "taxonomy",
 "descriptor": [
 {"href": "#goList"},
 {"href": "#goHome"}
]
 },

 {"id": "List", "tag": "taxonomy",
 "descriptor": [
 {"href": "#Person"},
 {"href": "#goFilter"},
 {"href": "#goItem"},
 {"href": "#doCreate"},

3.4 Describing Problem Spaces with Semantic Profiles | 69

 {"href": "#goList"},
 {"href": "#goHome"}
]
 },
 {"id": "Item", "tag": "taxonomy",
 "descriptor": [
 {"href": "#Person"},
 {"href": "#goFilter"},
 {"href": "#goItem"},
 {"href": "#doUpdate"},
 {"href": "#doRemove"},
 {"href": "#goList"},
 {"href": "#goHome"}
]
 },
 {"id": "goHome", "type": "safe", "tag": "choreography", "rt": "#Home"},
 {"id": "goList", "type": "safe", "tag": "choreography", "rt": "#List"},
 {"id": "goFilter", "type": "safe", "tag": "choreography", "rt": "#List"},
 {"id": "goItem", "type": "safe", "tag": "choreography", "rt": "#Item"},
 {"id": "doCreate", "type": "unsafe", "tag": "choreography", "rt": "#Item"},
 {"id": "doUpdate", "type": "idempotent", "tag": "choreography",
 "rt": "#Item"},
 {"id": "doRemove", "type": "idempotent", "tag": "choreography",
 "rt": "#Item"}
]
 }
}

Figure 3-2 shows a workflow diagram (the choreography) for the person-alps.json file.
You can find the complete ALPS rendering (ALPS file, diagram, and documentation)
of this semantic profile at the book’s website.

70 | Chapter 3: Hypermedia Design

http://webapicookbook.com

Figure 3-2. Person workflow (in ALPS format)

Discussion
Adopting SPDs is an important part of creating usable RWAs. However, this approach
is relatively new and is not yet widely used. Even though ALPS and DCAP have been
around for about 10 years, there aren’t a lot of tools and only limited written guidance
on semantic profiles. Still, my own experience with ALPS leads me to think you’ll be
seeing more on semantic profiles (even if it is in some future form other than ALPS
and DCAP).

An SPD is a kind of machine-readable interface documentation. SPDs are designed to
communicate general elements of the interface (base-level properties, aggregate
objects, and actions). SPDs do not contain implementation-level details, such as
MQTT topics, HTTP resources, protocol methods, return codes, etc. These details
are left to those tasked with writing the actual code that runs behind the interface
described by semantic profiles.

Some other considerations when using semantic profiles:

Aim for wide (re)use.
The value of a single semantic profile increases with the number of services using
that profile. That means you should create profiles that are easily used by others
(see Appendix A). It’s a good practice to keep semantic profiles more general

3.4 Describing Problem Spaces with Semantic Profiles | 71

than specific. The more specific you make your profile, the smaller the audience
for that profile.

Don’t use semantic profiles as API definitions.
Semantic profiles are descriptions, not definitions. Many of the details you need to
include in an interface definition do not belong in semantic profiles. For exam‐
ple, don’t include URLs or URL patterns in semantic profiles. Instead put them in
the API definition file (e.g., OpenAPI, etc.).

Use semantic profiles to describe your information architecture.
A good practice is to tag your semantic profile elements to indicate which ones
are describing the ontology, which are taxonomy, and which are choreography
(see “Example” on page 69).

Share semantic profiles in all responses.
It’s a good idea to return the URI of your semantic profile with each protocol
response. See Chapters 4 and 5 for details on how to do this.

Limit changes to published semantic profiles.
Since clients and/or services may create a logical dependency on your published
semantic profile, it is a good practice to not make any breaking changes to the
SPD once it is released. If you need to make changes, it is better to create a new
profile document at a new URI (e.g., api.example.org/profiles/personV2) and to
leave the existing profile (the one without the changes) online, too.

Make your semantic profiles accessible from a central location.
To make it easy for people (and machines) to find your semantic profiles, create a
central online location where they can be easily found. This might be a set of
actual profile documents or a page that has pointers (URLs) to other places
where each profile document is kept. This second option is good for cases where
you are not the profile author and you still want to have some control over which
profiles are commonly used.

See Also
• Recipe 3.1, “Creating Interoperability with Registered Media Types”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”

72 | Chapter 3: Hypermedia Design

3.5 Expressing Actions at Runtime with Embedded
Hypermedia
Using embedded hypermedia within responses in order to inform API consumer
applications what actions are currently possible is a foundational element in RWAs.
As mentioned in “Alan Kay’s Extreme Late Binding” on page 8, hypermedia controls
make it possible to implement super loose coupling, and that means you can more
easily modify services in the future, too.

Problem
How can you extend the lifetime of services by building systems that support safe,
nonbreaking workflow changes as well as short-term modifiability of existing services
by customizing data exchanges at runtime?

Solution
The best way to support both short- and long-term modifiability for product services
is to rely on inline hypermedia affordances to express the details of context-
dependent data exchanges at runtime. That means you need to adopt message
exchange formats that support embedded hypermedia (see Recipes 3.1 and 3.2).

Example
HTML offers a great example of embedded hypermedia controls to express data
exchanges at runtime. Here’s an example:

<html>
 <head>
 <title>Create Person</title>
 <link rel="profile" href="http://api.example.org/profiles/person" />
 <style>
 input {display:block;}
 </style>
 </head>
 <body>
 <h1>Create Person</h1>
 <form name="doCreate" action="http://api.example.org/person/"
 method="post" enctype="application/x-www-form-urlencoded">
 <fieldset>
 <hidden name="identifier" value="q1w2e3r4" />
 <input name="givenName" placeholder="givenName" required/>
 <input name="familyName" placeholder="familyName" required/>
 <input name="telephone" placeholder="telephone" pattern="[0-9]{10}"/>
 <input type="submit" />
 <input type="reset" />
 <input type="button" value="Cancel" />
 </fieldset>

3.5 Expressing Actions at Runtime with Embedded Hypermedia | 73

 </form>
 </body>
</html>

This form indicates one default input (identifier) and three additional inputs, two
of which are required (givenName, familyName) and one which must pass the pattern
validator (telephone). The form also indicates three possible actions (submit, reset,
and cancel) along with details on the URL, HTTP method, and body encoding meta‐
data for the submit action. Even better, any HTML-compliant client (e.g., a web
browser) can support all these actions without the need for any custom programming
code.

Here’s a simple example in Collection+JSON:

{ "collection" :
 {
 "version" : "1.0",
 "href" : "http://api.example.org/person/",

 "links": [
 {"rel": "self", "href": "http://api.xample.org/person/doCreate"},
 {"rel": "reset", "href":"http://api.example.org/person/doCreate?reset"},
 {"rel": "cancel", "href":"http://api.example.org./person"}
],
 "template" : {
 "data" : [
 {"name" : "identifer", "value": "q1w2e3r4"},
 {"name" : "givenName", "value" : "", "required":true},
 {"name" : "familyName", "value" : "", "required":true},
 {"name" : "telephone", "value" : "", "regex":"[0-9]{10}"}
]
 }
 }
}

Again, a Collection+JSON-compliant client application would be able to enforce all
the input rules described in the hypermedia response without the need for any added
programming.

In both cases, the meaning of the values of the input elements and metadata proper‐
ties do not need to be understood by the API consumer—they just need to be
enforced. So the number of inputs, the destination URL of the HTTP POST, and even
some of the rules can all change over time, and the API consumer application can still
reliably enforce the constraints. For example, the validation rule for the telephone
value can change (e.g., it might be context dependent based on where the application
is running).

74 | Chapter 3: Hypermedia Design

Discussion
Adopting embedded hypermedia messages is probably the most important step
toward creating RESTful web APIs. There are a number of acceptable structured
media types (see “Viable Registered Media Types for RESTful Web APIs” on page 421)
to choose from, and supporting them with a parsing library is a one-type expense that
pays off every time you use the library.

For an in-depth look at hypermedia client applications, see my
book RESTful Web Clients.

While embedded hypermedia is valuable, using it does come at some cost. First, it is a
design-time constraint. Both API consumers and producers need to agree to use it.
This is “the price of entry” when creating RWAs. While this is not different than “you
must use HTML, CSS, and JavaScript in responses to web browsers,” I still find many
architects and developers who chafe at the idea of using hypermedia-rich responses.
When you decide to build RWAs, you may need to help some people past this hurdle.
The material in Part I can be helpful for this.

Selecting the “right” structured hypermedia media type can easily turn into a battle.
There are multiple types to pick from, and some people fall into the trap of “you can
only pick one.” In truth, you can use features designed into HTTP (see Recipe 5.6) to
help support multiple response formats and select the best option at runtime. This is
30-year-old tech, so there are lots of examples and supporting code bits to help you
handle this. You can even decide on a single format to start (usually HTML) and then
add more types over time without breaking any existing applications.

Expressing domain state using hypermedia types can also be a challenge at times.
Developers need to be able to convert internal object and model rules into valid
hypermedia controls (forms, inputs, links, etc.). It is a kind of translation skill that
must be acquired.

The work of emitting and consuming hypermedia formats at runtime is a common
task, too. See Recipe 5.6 for details on how to use HTTP to help with that. Also, writ‐
ing API consumers that can navigate hypermedia responses takes some skill. Many of
the recipes in Chapter 4 are devoted to this work.

Other things to consider when using embedded hypermedia formats:

Supporting context changes
You can modify the hypermedia details in a response based on the user context
and/or server state. For example, a form might have five fields when an authenti‐
cated administrator logs in, but only have three input fields for anonymous users.

3.5 Expressing Actions at Runtime with Embedded Hypermedia | 75

Enabling service location changes
When you use hypermedia controls to describe potential actions, you can engage
in Alan Kay’s “extreme late binding.” Hypermedia clients are designed to look for
identifiers in the message (“where is the update-customer control?”), and to
understand and act upon the metadata found in that hypermedia control. All of
this can happen at runtime, not design or build time. That means the metadata
details of an action can be changed while the service is in production. For exam‐
ple, you can change the target URL of an action from a local endpoint within the
current service to an external endpoint on another machine—all without break‐
ing the client application.

Adapting to workflow changes
Changes in multistep processes or workflows can also be enabled with hyperme‐
dia. Service responses can return one or more steps to complete and expect the
client application to act on each one. There might be three steps in the initial
release (create account, add associated company, and add a new contact). Later,
these three steps might be consolidated into two (create account, add associated
company and contact). As long the client service consumer is following along
with the supplied hypermedia instructions (instead of hardwiring the steps into
code), changes like this will not break the consumer application. See Chapter 7
for recipes on implementing hypermedia workflows.

See Also
• Recipe 3.1, “Creating Interoperability with Registered Media Types”
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.11, “Validating Data Properties at Runtime”
• Recipe 5.6, “Supporting HTTP Content Negotiation”

3.6 Designing Consistent Data Writes with
Idempotent Actions
A particularly gnarly problem when working with external services in a machine-to-
machine situation over HTTP is the “failed POST” challenge. Consider the case
where a client application issues an HTTP POST to an account service to deduct 50
credits from an account and never gets a reply to that request. Did the request never
arrive at the server? Did it arrive, get processed properly, and the client never received
the 200 OK response? The real question is: should the client issue the request again?

There is a simple solution to the problem, and it requires using HTTP PUT, not POST.

76 | Chapter 3: Hypermedia Design

Problem
How do you design write actions over HTTP that remove the possibility of “double-
posting” the data? How can you know whether it is safe to resend a data-write for the
HTTP request if the client app never gets an HTTP response the first time?

Solution
All data-write actions should be sent using HTTP PUT, not HTTP POST. HTTP PUT
actions can be easily engineered to prevent “double-posting” and ensure it is safe to
retry the action when the server response never reaches the client application.

Example
Influenced by the database pattern of CRUD (create, read, update, delete), for many
years the “create” action has been mapped to HTTP POST and the “update” action has
been mapped to HTTP PUT. However, writing data to a server with HTTP POST is a
challenge since the action is not consistently repeatable. To say it another way, the
POST option is not idempotent. That is, POST does not return the same result when
repeated for the same resource. However, by design, the HTTP PUT operation is idem‐
potent—it assures the same results even when you repeat the action multiple times.

To avoid the possibility of inadvertently creating two resources when only one was
needed, the best solution is to always use HTTP PUT to write data to another machine
on the network:

**** REQUEST
PUT /person/q1w2e3 HTTP/2.0
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
If-None-Match: *

givenName=Mace&familyName=Morris

**** RESPONSE
HTTP/2.0 201 CREATED
Content-Type: application/vnd.collection+json
ETag: "p0o9i8u7y6t5r4e3w2q1"
...

Note that, while not common, it is proper for HTTP to have a PUT request result in a
201 CREATED response—if there is no resource at that address. But how do you tell
the service that you are expecting to create a new resource instead of update an exist‐
ing one? For that, you need to use If-None-Match. In the preceding example, the If-
None-Match: * header says “create a new resource at the supplied URL if there is no
existing resource at this URL.”

3.6 Designing Consistent Data Writes with Idempotent Actions | 77

If I wanted the service to treat the HTTP PUT as a replacement of an existing resource,
I would use the following HTTP interaction:

**** REQUEST
PUT /person/q1w2e3 HTTP/2.0
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
If-Match: "p0o9i8u7y6t5r4e3w2q1"

givenName=Mace&familyName=Morris

**** RESPONSE
HTTP/2.0 200 OK
Content-Type: application/vnd.collection+json
ETag: "o9i8u7y6t5r4e3w2q1p0"
...

Here, the HTTP request is marked with the If-Match: header that contains the entity
tag (or ETag) that identifies the exact version of the resource at /person/q1w2e3 you
wish to update. If the ETag at that URL doesn’t match the one in the request (e.g., if
the resource doesn’t exist or has been updated by someone else lately), then the HTTP
PUT will be rejected with an HTTP 412 Precondition Failed response instead.

Discussion
This use of the PUT-Create pattern is a way to simplify the challenge of knowing
when it is OK to retry an unsuccessful write operation over HTTP. It works because
by design, PUT can be retried without creating unwanted side effects. POST—by design
—doesn’t make that promise. There have been a handful of attempts to make POST
retry-able. Two examples are Bill de hÓra’s HTTPLR and Mark Nottingham’s POE.
Neither gained wide adoption.

Using HTTP PUT to create new resources takes a bit more work up front—both for
clients and servers—primarily because it depends on proper use of the HTTP headers
If-None-Match, If-Match, and ETag. In my experience, it is best to “bake” this recipe
into code for both the server and the client applications. I typically have “cover meth‐
ods” in my local code called createResource(…) and updateResource(…) (or some‐
thing similar) that know how to craft a proper HTTP PUT request (including the right
headers) and how to respond when things don’t go as planned. The convenience of
these cover methods lowers the perceived added cost of using PUT-Create and
ensures it is implemented consistently across client and server.

See related recipes on creating and updating resources in Chapters
4 and 5.

78 | Chapter 3: Hypermedia Design

https://oreil.ly/KJh9v
https://oreil.ly/1wFmz

Another recipe that is wrapped up in this one is the ability for client applications to
supply resource identifiers. When using POST, the service is usually expected to cre‐
ate a new resource identifier—typically a monotonic ID like /person/1, /person/2,
and so forth. When using PUT, clients are expected to supply the resource identifier
(think “Please upload the file my-todo-list.doc to my document storage”). See Chap‐
ters 4 and 5 for more on that.

Designing in this support for idempotent writes with the PUT-Create pattern means
both your client and server applications will be more reliable and consistent—even if
the network connections you are using are not.

See Also
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 4.2, “Coding Clients to Be HTTP Aware”
• Recipe 5.15, “Improving Reliability with Idempotent Create”
• Recipe 6.2, “Making All Changes Idempotent”

3.7 Enabling Interoperability with Inter-Service
State Transfers
An important part of creating a collection of interoperable services on the web is
making sure each service can act independently and be enlisted in a larger goal or
solution. We need to make sure our service APIs do not assume that the only valid
use case is when clients are “captives” of that service. Services need to be seen as
“part” of a whole, not just a “whole.”

Problem
How can we make sure our service interfaces work even when that service is enlisted
as one part of a larger solution? A solution that has been designed by someone else
(the API consumer application) and that integrates with other APIs. What does it
take to ensure our services can be easily integrated with other services that I haven’t
seen before and don’t control, while still maintaining system safety and data integrity?

Solution
Establishing the principle that your service should be able to interoperate with other,
unknown, services can be a challenge. The easiest and safest way to do this is to
implement the API as a set of standalone, stateless operations. These can accept
inputs, perform an action, return results, and forget the whole experience.

3.7 Enabling Interoperability with Inter-Service State Transfers | 79

Computing values is a good example of a simple, stateless transfer between services.
Consider a postal code validator service that might support passing in a body with a
full address (and possibly some identity metadata) and returning an associated postal
code. All the needed state data is transferred in the request/response pair.

However, there will be times when you need to transfer a block of data into a service,
allow that service to operate on that data for a while, and then export the results. In
these cases, more explicit import/export operations may be a good solution.

Using FORMS
The simplest way to transfer state between services is by passing data properties using
a form supplied by the service receiving the state information. Fundamentally, this is
how HTML and the other hypermedia formats work. However, some services may
require additional metadata be transferred in order to process the incoming data, or
may not support native hypermedia controls. In those cases, you need to design addi‐
tional support in your interface to explicitly transfer state data.

Using import/export operations
The next easiest way to create a service that is easy for someone else to use is to sup‐
port a step that allows transferring state from one service to another. Usually this
means offering an operation that imports (importState) state from somewhere else,
and an operation that exports (exportState) your service’s state to somewhere else.

Instead of adding explicit import/export actions to your interface, you can also build
that functionality into selected existing actions of the API. For example, you can
arrange to accept inputs (via a FORM element) when creating a new user account.

The preceding use cases are examples of transferring state “by value”—sending the
exact state values from one service to the next using runtime FORMS descriptions.
This is the easiest way to interoperate with other services you don’t control.

Shared references
You can also arrange to transfer state “by reference”—by sharing a URL that points to
the collection of data you wish to transfer. This takes a bit more coordination
between services since both of them need to know, ahead of time, about the idea of
shared data via URLs, and the format in which the shared data is stored. See Recipe
7.2 for more details.

80 | Chapter 3: Hypermedia Design

Example
There are three ways you can enable state transfer between services:

• Pass by value using inline existing FORMS
• Pass by value using dedicated operations (e.g., importState and exportState)
• Pass by reference (via a shared URL) using dedicated operations or a FORM

Pass by value using existing FORMS
Transferring state data between services via hypermedia forms is the simplest and
most direct way to solve the problem:

<form action="http://api.example.org/shopping/cart"
 method="post" name="cartCreate">
 <input name="cartId" value="q1w2e3r4t5y6u7i8" />
 <input name="cartName" value="Mike's Cart" />
</form>

This works well when the state data collection is small and the receiving service
doesn’t require that an existing stateful session exist beforehand.

Pass by value using dedicated operations
You can also support state transfer by adding import and export operations to your
service interface. For example, your service might offer a shopping cart management
experience. Along with the usual steps (create, addItem, removeItem, and checkout),
you could add a step that imports an existing shopping cart collection and one that
exports that collection.

Here is a snippet of ALPS that shows some of the actions of a simple shopping API
that supports import and export operations:

{
 $schema: "https://alps-io.github.io/schemas/alps.json",
 alps: {
 version: "1.0",
 title: "Simple Shopping Cart",
 doc: {value: "A simple shopping cart service"},

 "descriptor" : [
 {
 "id" : "doCartImport",
 "type" : "idempotent",
 "rt" : "#cartCollection",
 "tag" : "choreography",
 "descriptor" : [
 "href" : "#cartCollection"
]
 },

3.7 Enabling Interoperability with Inter-Service State Transfers | 81

 {
 "id" : "doCartExport",
 "type" : "idempotent",
 "rt" : "cartCollection",
 "tag" : "choreography"
 }
]
 }
}

This works well when the amount of state data to transfer is relatively large and/or
complex (e.g., a collection of 15 items plus metadata). The upside is you get to trans‐
fer a lot of data in a single step. The downside is you need to coordinate this kind of
state transfer ahead of time since both parties must agree on the data property names,
contents, and the general shape of the collection to be transferred.

Pass by reference
You can also arrange to pass state data between services by sharing a “pointer” to a
state collection stored somewhere else that is reachable by both parties. The easiest
way to do this is to share a URL that points to a resource that will respond with the
media type and vocabulary format expected (or explicitly requested) by the calling
party.

The interaction would look like this (in HTML):

<form action="http://api.example.org/users/q1w2e3r4"
 method="post" enctype="multipart/form-data">
 <input type="file" name="userData" accept="application/vnd.collection+json"/>
</form>

This example describes an “upload” operation that the target service can implement.
Again, the key to success here is that both parties have already agreed to the expected
data format and vocabulary contents ahead of time. You can document these transfer
operations when you publish your API to let others know how your service interface
expects to send information to or receive information from other services.

Discussion
If at all possible, supply hypermedia forms in your API responses that handle state
transfers in a single step. This will allow other services to act as API clients and exe‐
cute the transfer directly. This requires no additional coordination between clients
and servers.

Also, keep the orchestration between services to a minimum. For example, it’s best to
handle state transfers in a single step instead of requiring API consumers to first start
a session or log in before doing other actions. If identity is needed, make that interac‐
tion the result of a redirection from the target state transfer:

82 | Chapter 3: Hypermedia Design

**** REQUEST ****
POST /shopping/cartCreate HTTP/1.1
Host: api.example.org
Content-Type: application/x-www-form-urlencoded

cartId=q1w2e3r4&cartName=Mike's%20Cart

**** RESPONSE ****
HTTP/1.1 Unauthorized
WWW-Authenticate: Basic

**** REQUEST ****
POST /shopping/cartCreate HTTP/1.1
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
Authorization: Basic q1i8w2o9e3p0r4u7t5...

cartId=q1w2e3r4&cartName=Mike's%20Cart

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Authorization: Basic: q1i8w2o9e3p0r4u7t5...
Link: <http://docs.alps.io/shopping.json>; rel="profile"

{
 "alps" : {
 ...
 }
}

If you decide to support “pass by reference” state transfers, it is best to use structured
media types like HAL, SIREN, Collection+JSON, etc. as the message format, and to
supply vocabulary references (e.g., ALPS URIs) when passing the data. This will
improve the chances that the uploaded data is only accepted when the receiving
service confirms the format and the vocabularies are “understood” by the receiving
party.

Dealing with Cross-Origin Resource Sharing Limitations
Beware that HTML browsers will not support cross-origin POSTing of messages or
uploading of documents from “external” domains. This has to do with the Cross-
Origin Resource Sharing (CORS) limitations implemented by HTML browsers. If you
are implementing an API that will support a “by reference” state transfer (e.g., a file
upload), you may also need to emit headers (e.g., Access-Control-Allow-Origin,
etc.) to allow API consumers to successfully upload their documents.

3.7 Enabling Interoperability with Inter-Service State Transfers | 83

https://oreil.ly/AKyDh
https://oreil.ly/AKyDh

See Also
• Recipe 4.15, “Maintaining Your Own State”
• Recipe 6.8, “Ignoring Unknown Data Fields”
• Recipe 7.2, “Supporting Shared State for Workflows”

3.8 Designing for Repeatable Actions
On the web, there are lots of chances that a single request might not get through,
might be invalid, or might just “disappear” with no response. This inherent unrelia‐
bility of the network means we need to design in ways to survive and—whenever pos‐
sible—overcome these problems in order to create service interfaces that are depend‐
able over time. This recipe relies on the concept of idempotence to make HTTP
requests repeatable when necessary.

Problem
Sometimes an HTTP request fails due to network problems or some other transient
problem. What can we do to make sure our failed HTTP requests can be reliably
repeated without causing additional problems? What is idempotence, how does it
work, and how can we design in support for repeatability for our service interfaces?

Solution
HTTP was initially designed to take into account the possibility that some requests
might fail. Usually, these failures are transient network problems, and repeating the
request will resolve the problem. Repeating safe HTTP requests—ones that are read-
only—is not a hard problem. But repeating HTTP requests that modify resources can
be much trickier. See Recipe 7.16 for some common solutions to this problem.

Network idempotence
There are two things you can do to improve the possibility of repeating HTTP
requests. First, you can use HTTP’s idempotent methods (GET, PUT, and DELETE) in
order to read, write, and remove resources. That means not relying on HTTP’s POST
(since it was not built to support idempotent updates). Whenever possible, I rely on
PUT to create new resources (see Recipe 5.15). It takes a bit more work to set up PUT
for create, but it greatly improves the reliability of your service.

Operation idempotence
The second thing you can do is design write operations themselves to support idem‐
potences. This often means not using patterns like increments (“add one to each

84 | Chapter 3: Hypermedia Design

total”) or computing percentages (“increase the sale price by 5%”) and instead using
replacement values and validators (“if the current price is 100, change it to 105”).

By relying on HTTP’s PUT to update a resource and by designing the body of updates
to use replacement rather than increment, you can increase the repeatability of the
write operations for your service interface.

Example
Both network- and message-based repeatability are important. This section offers
examples of each.

Network repeatability
Designing resource creation and update to use HTTP’s PUT method uses the idem‐
potence of PUT to support repeatability at the network level:

**** REQUEST ****
PUT /onboarding/q1w2e3r4
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
Content-Length: NN
...

id=q1w2e3r4&givenName=Mork&familyName=Morkelson&...

**** RESPONSE ****
503 Service Unavailable
Content-Type: application/problem+json
Content-Length: XX
...
{
"type": "https://example.com/probs/unavailable",
"title": "Server Unavailable",
"detail": "Can't reach target server",
"instance": "/onboarding/q1w2e3r4",
"status": 503
}

In this example, the PUT failed due to a problem with another server along the way.
Since PUT is idempotent, it is safe to repeat this request again. In fact, you could
repeat this request even if you never got an HTTP response at all (a rare, but possible
outcome).

Message repeatability
Even when the network-level interaction is idempotent (e.g., you are using POST
instead of PUT), you can improve repeatability of an HTTP request by making sure
the body of the message supports functional idempotence.

3.8 Designing for Repeatable Actions | 85

For example, when updating all the prices in your product catalog, you can provide a
nonidempotent update, like this:

**** REQUEST ****
PUT /catalog/priceUpdate
Host: api.example.org
Content-Type:application/x-www-form-urlencoded
Accept: application/vnd.siren+json
....

updatePercent=.05

In this example, when the PUT request is received, the value of updatePercent is
used to update each of the 55 products in the company catalog.

But what happens if the update fails halfway through the list of products? Some prod‐
ucts were updated, some were not. Or what if we never get a response message for the
request? Was is successfully applied? To all products? It is safe to rerun this action?

We can greatly improve the repeatability of this example by redesigning it as idempo‐
tent at the message-level update:

**** REQUEST ****
PUT /catalog/priceUpdate
Host: api.example.org
Content-Type:text/csv
Accept: application/vnd.siren+json
....

productId, currentPrice,newPrice
q1w2e3, 100,105
t5y6u7, 200,210
i8o9p0, 250,265
i8y6r4, 50,55
...

Notice that this update message includes the productId, currentPrice, and new
Price properties. Now this action can safely be repeated. The service can check to see
if the catalog price for a particular productId is set to currentPrice before applying
the newPrice value. Otherwise, the operation can skip the price update for that
record and move on to the next.

Another possible solution for this example is to simply include the
productId and newPrice values. Running the process multiple
times will still result in the proper pricing every time.

It’s important to not just rely on the HTTP method to ensure a message’s repeatability.

86 | Chapter 3: Hypermedia Design

Discussion
Designing repeatable updates often means doing more work up front to better
explain the changes you want to apply to a resource (or collection of resources). This
is definitely more work, but easily pays for itself the first time you have an unexpected
crash in the middle of applying a large update.

PUT or POST?
Because repeatability is so important, most of the examples you’ll see in this book use
PUT instead of POST for creating new resources and updating existing ones. It is possi‐
ble to make POST idempotent by adding an idempotency key like the one proposed for
the IETF. I still use PUT most of the time for my designs. See Recipe 3.6 for additional
discussion on this topic.

See Also
• Recipe 3.6, “Designing Consistent Data Writes with Idempotent Actions”
• Recipe 5.15, “Improving Reliability with Idempotent Create”
• Recipe 6.2, “Making All Changes Idempotent”
• Recipe 7.1, “Designing Workflow-Compliant Services”

3.9 Designing for Reversible Actions
There will be cases where, after applying a change to one or more resources, you will
need to roll back or undo that change. This recipe shows how you can make support
for reversibility part of your service interfaces.

Problem
What happens when you want to back out or roll back an update to one or more
resources? How can you design your updates to make reversibility safe and easy to
implement and use?

Solution
When you need to roll back an update, there are two basic ways to solve the problem:

• Support a local undo (see Recipe 7.17)
• Send another HTTP request that reverses the previous one

3.9 Designing for Reversible Actions | 87

https://oreil.ly/7dnC3

The first example (support a local undo) is covered in Recipe 7.17, so I won’t get into
those details here. Suffice it to say that the local undo works for cases where there are
no other dependent actions (e.g., you have no other services that were modified as a
consequence of the update you wish to reverse). If, however, your update has affected
other records in the system or your update is just one of several that might be applied
to the same resource, then supporting reversibility can be more complicated.

Issue a second request
For cases where only a single record has been affected (e.g., a data-centric resource
updates a system of record), you can usually issue another HTTP request that has a
rollback effect on the resource. For example, if you issued an HTTP PUT to replace the
givenName property of a record, you can usually issue another HTTP PUT to replace
the same property with the previous value. This assumes you know the previous value
and safely make the change (e.g., no one else has already modified the record).

Issue a special request

There are cases where a simple re-PUT will not work. You might have issued an HTTP
DELETE for a resource and want to recover that resource. There is no HTTP UNDELETE
method. Instead you need to restore an existing record with a special command. The
safest way is to create another, special operation (undoDelete) that uses HTTP PUT
and some argument (usually the previous URL along with a validation value like the
ETag header). This means the service interface needs to be designed to support this
feature, including saving DELETEd resources in case they need to be restored!

Example
You can use the two PUTs approach or a special command to add reversibility sup‐
port to your designs.

Rollback with two PUTs
Here’s an example where you can issue a second PUT to undo the first:

**** REQUEST ****
GET /users/q1w2e3r4
Host: api.example.org
Accept: application/html

**** RESPONSE ****
200 OK
Content-Type: application/html
ETag: "w/p0o9i8u7y6t5r4"
...

<html>

88 | Chapter 3: Hypermedia Design

...
<div class="user">
 Millie
 Murcheson
</div>
...
</html>

Here’s the first update:

**** REQUEST ****
PUT /users/q1w2e3r4
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
Accept: application/html
If-Match: "w/p0o9i8u7y6t5r4"

givenName=Molly&familyName=Murcheson

**** RESPONSE ****
200 OK
Content-Type: application/html
If-Match: "w/q2w3e4r5t6y7u8"
...

<html>
...
<div class="user">
 Molly
 Murcheson
</div>
...
</html>

And, finally, we can roll back the change with another HTTP PUT:

**** REQUEST ****
PUT /users/q1w2e3r4
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
Accept: application/html
If-Match: "w/q2w3e4r5t6y7u8"

givenName=Millie&familyName=Murcheson

**** RESPONSE ****
200 OK
Content-Type: application/html
ETag: "w/i9u8y7t6r5e4"
...

<html>
...

3.9 Designing for Reversible Actions | 89

<div class="user">
 Millie
 Murcheson
</div>
...
</html>

Note the use of the ETag to “version” the response and If-Match headers to make the
PUT conditional.

Special command approach
In more involved cases, you’ll need to use a special rollback action on your service
interface.

Here is the action that removes an existing resource from the collection:

**** REQUEST ****
DELETE /users/q1w2e3r4
Host: api.example.org
Accept: application/html
If-Match "w/y6t5r4e3w2q1"

**** RESPONSE ****
204 No Content
....

And here is a special command for the interface that supports rolling back the DELETE
action:

**** REQUEST ****
PUT /users/rollback?id=q1w2e3r4
Host: api.example.org
Accept: application/html
If-Match "w/y6t5r4e3w2q1"

**** RESPONSE ****
201 Created
Location: /users/q1w2e3r4
....

Note the use of 201 Created to confirm the resource has been restored.

Discussion
The advantage of issuing a special request is that client applications don’t need to
recall details of the original resource in order to undo an update. The downside is
that service interfaces need to take responsibility for keeping a history of resource
changes.

90 | Chapter 3: Hypermedia Design

When all else fails, you may need to solve your reversibility problem the hard way:
calling service support for help re-creating the previous conditions on the platform.
See Recipe 7.18 for more on this approach.

The URL to use for special rollback commands is nothing special. I’ve seen teams use
the same URL space as the original target resource (/users/q1w2e3r4), and I’ve seen
teams use a special rollback resource (/rollbacks/users/q1w2e3r4). I’ve also seen a
mix of both (see the preceding example).

For situations where more than one resource is modified by a single action (e.g.,
removeCustomerData affects the customer, orders, and sales data stores), you need to
design a special rollback feature for your resource and, if possible, make sure all three
dependent services support their own rollback or, if possible, implement your own
version of a local undo (see Recipe 7.17) for each of the other services. This can be a
bit tricky, and you may need to get cooperation from the owners of the other services
in order to support the rollback properly.

See Also
• Recipe 7.1, “Designing Workflow-Compliant Services”
• Recipe 7.17, “Supporting Local Undo or Rollback”
• Recipe 7.18, “Calling for Help”

3.10 Designing for Extensible Messages
Usually, once a service interface experiences wide use, ideas for improving that inter‐
face start to appear. One of the ways to improve the interface is to extend the message
body of the HTTP response type. This recipe shows you how to easily design in a way
to extend the message body in the future without breaking any existing API
consumers.

Problem
You are getting requests to modify the response body of an API call. Some want new
properties added, others want a scalar property (e.g., phoneNumber) turned into an
array (phoneNumbers). How can you make these kinds of extensions without breaking
any API consumers already using the current release? What are the limits of extend‐
ing messages?

Solution
An effective approach to modifying response bodies that are already in production is
to adopt the “Don’t Change It, Add It” rule (see “Don’t change it, add it” on page 35).

3.10 Designing for Extensible Messages | 91

That means you leave any existing elements in place and simply include new elements
in the current response body. You can also design your response formats to support a
simple name-value-pair collection where you can place additional new properties (of
any type, including arrays). See the following examples for details.

Example
Consider a simple HTTP response like this message body:

{
 "name": "Merk Muffly",
 "region", "southwest",
 "age": 21
}

There are a number of possible ways to extend this object to improve its ability to
accommodate requested changes in the future.

Add a properties collection
You can add new properties to the object by including a name-value pair (NVP) col‐
lection as part of the initial design:

{
 "name": "Merk Muffly",
 "region", "southwest",
 "age": 21,
 "nvp" : [...]
}

Now you can add any other kind of property (scalar, array, object) without disrupting
the existing structure:

{
 "name": "Merk Muffly",
 "region", "southwest",
 "age": 21,
 "nvp" : [
 {"hatsize" : "3"},
 {"phoneNumbers": ["123-456-7890","980-657-3421"]},
 {"address": {"street":"...","city":"...","state":"...","zip":"..."}}
]
}

Add parallel properties
There are times when you need to modify or extend an existing property into multi‐
ple related properties. For example, you might need to improve the name property
and extend it to use givenName and familyName. Instead of replacing the name prop‐
erty, you can just add the two new properties:

92 | Chapter 3: Hypermedia Design

{
 "givenName": "Merk",
 "familyName": "Muffly",
 "name": "Merk Muffly",
 "region", "southwest",
 "age": 21,
 "nvp" : [
 {"hatsize" : "3"},
 {"phoneNumbers": ["123-456-7890","980-657-3421"]},
 {"address": {"street":"...","city":"...","state":"...","zip":"..."}}
]
}

Now, when returning the message in HTTP response, both formats are supported.
API consumers that understand the name property will still find it, and API consum‐
ers that understand the new properties (givenName and familyName) will find what
they expect.

It is important to point out that the rules of message bodies sent to the service (via
PUT or POST) will need to be modified, too. In this case, the service can be modified
to accept all three values (name, givenName, and familyName). When the API client
sends just name, the service can spit up the passed value and store the results in given
Name and familyName. Conversely, when the API client sends givenName and family
Name, the service can combine those two values and store the results in name.

Host multiple output formats
In some cases, the changes to the response message are extensive enough that just
modifying a few properties is not enough. Instead, you can return multiple versions
of the same information in a single response. To do this, you need to design your ini‐
tial message to allow for “hosting” multiple output formats. You can do this by using
an additional “root” element in all your response designs.

Here’s how our current example object looks with an additional “root” to host output
formats:

{"message" : {
 "person" : {
 "givenName": "Merk",
 "familyName": "Muffly",
 "name": "Merk Muffly",
 "region", "southwest",
 "age": 21,
 "nvp" : [
 {"hatsize" : "3"},
 {"phoneNumbers": ["123-456-7890","980-657-3421"]},
 {"address": {"street":"...","city":"...","state":"...","zip":"..."}}
]
 }
}}

3.10 Designing for Extensible Messages | 93

Now that the important properties are enclosed in the person element, we can easily
return new releases of the person or even other new message elements:

{"message" : {
 "personv2": {...},
 "metadata": [...],
 "links": [...],
 "person" : {
 "givenName": "Merk",
 "familyName": "Muffly",
 "name": "Merk Muffly",
 "region", "southwest",
 "age": 21,
 "nvp" : [
 {"hatsize" : "3"},
 {"phoneNumbers": ["123-456-7890","980-657-3421"]},
 {"address": {"street":"...","city":"...","state":"...","zip":"..."}}
]
 }
}}

As long as the initial design includes the initial enclosing root element, adding new
versions of message bodies or entirely new root elements does not disrupt existing
API consumers.

Discussion
These design rules are especially handy if you decided to not use an existing hyper‐
media format and are instead creating your own.

Most of the predefined message formats used in these recipes
(HTML, HAL, SIREN, and Collection+JSON) already follow these
extensibility rules.

A key challenge to the success of these extensibility patterns will be that API consum‐
ers may apply strict schema validators (JSON-Schema, XML-Schema, etc.) to incom‐
ing messages. You can remind consumers to not make this mistake, but you cannot
completely prevent it.

Usually, you can apply these same design patterns to existing message formats (e.g.,
HTML, HAL, etc.) without disrupting existing client applications.

See Also
• Recipe 3.10, “Designing for Extensible Messages”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”

94 | Chapter 3: Hypermedia Design

• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 6.10, “Modifying Data Models in Production”
• Recipe 6.11, “Extending Remote Data Stores”
• Recipe 7.1, “Designing Workflow-Compliant Services”

3.11 Designing for Modifiable Interfaces
Just as well-used APIs are likely to generate requests for message format changes, they
are also likely to experience requests for modifications to the external interface itself,
including URLs, HTTP methods, and input arguments. This recipe offers three rules
for updating service interfaces without breaking existing API consumers.

Problem
How can I update the service interface (including changing URLs, HTTP methods,
and input arguments) without breaking existing clients? What are the three rules for
creating nonbreaking changes? What other principles should I keep in mind when
attempting to update an existing service interface?

Solution
Almost every API experiences interface changes. One of the advantages of working in
the virtual world is that change is less costly than in the physical product world. But
there are still challenges. However, you can make change a part of your design from
the very beginning with some general guidelines and three solid rules.

First, do no harm
The phrase “First, do no harm” comes from the Hippocratic Oath. Dating back to the
fourth century BCE, the Hippocratic Oath has been taken by many physicians as a
pledge to give proper care to patients. This phrase is just one small part of the oath,
but it’s the best-known part. API deserve the same pledge, too.

Once your API is in production, it takes on a life of its own. When other applications
are using your API, those applications become dependent on your API. You, as the
author of the API, have a responsibility to all your API users. And one of the very
first responsibilities is to “do no harm.” If you make a change to a running API that
breaks one of your API consumers, you are not following the Hippocratic Oath of
APIs.

3.11 Designing for Modifiable Interfaces | 95

A fork in the road
Sometimes you’ll run into a situation where you must make a breaking change to a
production API. For example, you might release an API that allows customers to
update their personal information on your servers, and a year later the company
decides that it will no longer allow customers to edit that data directly. When this
happens, you need to release a new API with the proper functionality and instruct all
users of the existing API to update their applications to point to the new interface.
While that happens, you need some time when both APIs are available in production.

This process is called “forking” the interface. You create a new API based on the exist‐
ing one and run both in production until everyone has updated their client applica‐
tions. Along the way, you can do a few things to make it easy to migrate from the old
release to the new one.

Three rules for modifying your service interface
When you decide to update your existing interface, you need to follow these rules:

• Take nothing away
• Don’t redefine things
• Make additions optional

Once you’ve published your API, all the URLs, associated properties (inputs and out‐
puts), and even the HTTP methods in the documentation are promises that you can’t
break. Using hypermedia formats that allow you to include input metadata (FORMS)
at runtime can help reduce dependence on protocol details like HTTP methods and
input arguments, but changing existing promises its the wrong way to go. Instead,
you can add new features that provide the needed functionality.

You also cannot redefine the existing elements of the interface. If you define the ?
size query parameter to mean the size of a page of data, you can’t later redefine ?
size to mean the size of a hat or shoe. Redefining elements is the same as replacing
them, and that’s a breaking change.

Finally, any new things can be added as optional elements to the interface as long as
they don’t take anything else away or redefine an existing item. If you come up with
more input arguments, you can add those to the FORM, but you cannot make them
required. If you want to create a new action that has new required inputs, you can
define a new API endpoint, method, and argument collection (a new FORM). But
you cannot make calling that action required, either.

96 | Chapter 3: Hypermedia Design

See Recipe 3.10 for more details on modifying the service interface
response body.

Example
If you add a new argument to an input form, you need to make that argument
optional, and you should supply a default value, too:

<!-- existing search form -->
<form action="..." method="GET" name="findUsers">
 <input name="givenName" value="" required="true" />
 <input name="familyName", value="" required="true" />
 <input type="submit" />
</form>

<!-- updated search form -->
<form action="..." method="GET" name="findUsers">
 <input name="givenName" value="" required="true" />
 <input name="familyName" value="" required="true" />
 <input name="regions" value="all" required="false" />
 <input type="submit" />
</form>

Note that these nonbreaking changes work both ways. API consumers should be able
to send either form to the server to get results. If the region argument is missing, the
service should assume the default value ("all") was sent.

If you want to modify an action that has new required inputs, you can simply add the
new action to the interface and allow API client applications to ignore that form until
they are updated to handle it.

Here’s a form that accepts an order for processing:

"actions": [
 {
 "name": "processOrder",
 "title": "Process Order",
 "method": "PUT",
 "href": "/orders/processing/q1w2e3r4",
 "type": "application/x-www-form-urlencoded",
 "fields": [
 { "name": "orderNumber", "type": "hidden", "value": "42" },
 { "name": "productCode", "type": "text", "value": "..." },
 { "name": "quantity", "type": "number", "value": "..." }
]
 },
 {
 "name": "ProcessSalesRepOrder",
 "title": "Process Sales Rep Order",

3.11 Designing for Modifiable Interfaces | 97

 "method": "PUT",
 "href": "/orders/salesrep/p0o9i8u7",
 "type": "application/x-www-form-urlencoded",
 "fields": [
 { "name": "orderNumber", "type": "hidden", "value": "42" },
 { "name": "productCode", "type": "text", "value": "..." },
 { "name": "quantity", "type": "number", "value": "..." },
 { "name": "salesRep", "type": "text", "value": "..." }
]
 }
]

Here, a feature has been added that allows sales representatives to get credit for new
product sales. But they only get credit if the sales rep’s name is sent in with the order.
That’s a required element of the new processSalesRepOrder action. A solid solution
is to include both actions and allow client applications to use the one they under‐
stand.

As long as you “do no harm,” you can modify the existing service interface long after
it has been published to production.

Discussion
While documenting your API (and all its changes) is important, it is not enough.
Especially in cases where you don’t know all the people using your API (see Appen‐
dix A), you can’t be sure that people will read your documentation or that, once they
read it, they have the time or resources to update their API consumer apps.

Changes to the service interface vocabulary (see Recipe 3.3) require
the same attention to detail. Be sure to “do no harm” when updat‐
ing your semantic profiles, too.

You might think you can safely change a few of the interface details of your API
without causing API consumer problems, but that’s often not the case. This was poin‐
ted out by Google’s Hyrum Wright when he coined what would later be known as
Hyrum’s Law. He said, “With a sufficient number of users of an API, it does not mat‐
ter what you promise in the contract: all observable behaviors of your system will be
depended on by somebody.”

Internally, one way you can confirm that your interface modifications do not intro‐
duce breaking changes is to be sure to apply the existing test suite to the new inter‐
face. By running all the old tests against the new API, you can come close to seeing
how existing client applications will react to your interface changes.

98 | Chapter 3: Hypermedia Design

See Also
• Recipe 3.10, “Designing for Extensible Messages”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 6.10, “Modifying Data Models in Production”
• Recipe 6.11, “Extending Remote Data Stores”
• Recipe 7.1, “Designing Workflow-Compliant Services”

3.11 Designing for Modifiable Interfaces | 99

CHAPTER 4

Hypermedia Clients

The good news about computers is that they do what you tell them to do. The bad news is
that they do what you tell them to do.

—Ted Nelson

Writing applications that use APIs to consume external services on the web requires a
mix of specificity (what to do) and generality (how to do it) that can be challenging.
The recipes in this chapter are focused on both what we tell client applications to do
using local code and how we tell them via the protocol and messages we send back
and forth. This combination of “what” and “how” makes up the foundation of stable,
yet flexible, API consumer apps.

For more information on the art of creating API consumers, check
out “Increasing Resilience with Hypermedia Clients” on page 26.

As a general rule, being very explicit about what clients can and cannot do will result
in applications that are easy to break and hard to reuse. A better approach is to create
API consumer apps that make only a few basic assertions about how they communi‐
cate (e.g., protocol, message model, and vocabulary) with servers and let the server
supply all the other details (the what) at runtime. As shown in Figure 4-1, the recipes
in this chapter focus on using hypermedia formats over HTTP protocol to support
validation, state management, and the creation of goal-oriented client applications.
This is what HTML browsers have done for 30+ years. We need to take a similar
approach with our API consumers, too.

That doesn’t mean we need to duplicate the HTML browser. That client application is
focused on a high degree of usability that relies on humans to be the “brains” behind

101

the interface (or in front of the interface, really). The HTML message format is
designed to make it possible to control the visual rendering of messages as well as the
animation of content using inline scripting. This focus on UI and humans is not
needed for most web service API consumers.

Figure 4-1. Hypermedia client recipes

Instead, for web services, we need to focus on M2M interactions and how to make up
for the “missing element”—the human. The recipes in this chapter have been selected
because they lead to a high level of reusability without depending on humans to be
involved in every step of the client-server interaction. To that end, there is an empha‐
sis on four elements of resilient hypermedia-driven clients:

• Taking advantage of protocols and formats
• Relying on runtime metadata
• Solving the M2M interface challenge
• Using semantic profiles as shared understanding between client and server

With that as a backdrop, let’s dig into our set of client-side recipes for RESTful web
APIs.

102 | Chapter 4: Hypermedia Clients

4.1 Limiting the Use of Hardcoded URLs
Changing URLs on the server can cause annoying problems for client applications.
Sometimes URL changes occur due to adding or removing features—it is a challenge
to protect your client application from these kinds of problems. Sometimes the ser‐
vice URLs change due to “re-homing” or moving the service from one platform or
implementation group to another. How can you limit the impact of server URL
changes on your client application?

Problem
How can you reduce the chances of a client application failing when service URLs are
changed?

Solution
The best way to limit the impact of service URL changes in your client applications is
to “abstract away” the actual URL values:

Use named URL variables.
First, you should code your client so that any URL reference within the applica‐
tion is a named variable, not an actual URL. This is a similar pattern to how you
can “localize” your client application for a single language (French, Arabic,
Korean, etc.).

Store URL values in configuration files.
Second, once you have a set of URL variable names, move the actual strings out
of the source code and into a configuration file. This makes it possible to update
the URLs without changing the source code or recompiling the application.
Depending on your platform, you may still need to redeploy your client applica‐
tion after changing the configuration file.

Reduce the number of URLs you need to “memorize” to one.
If at all possible, limit the total number of URLs your application needs to “know
about” in the first place. If you’re accessing a service that supports hypermedia
formats (Collection+JSON, SIREN, HAL, etc.), your client application will likely
only need to “memorize” one URL—the starting or “home” URL (see Recipe 5.1).

Convince the service teams to use hypermedia or configuration files.
Lastly, if you have influence over the people who are writing the services you use
(e.g., your enterprise colleagues), try to convince them to use hypermedia for‐
mats that supply URLs at runtime, or at least provide a downloadable configura‐
tion file where the service team can store all the named URL variables that your
client will need at runtime.

4.1 Limiting the Use of Hardcoded URLs | 103

Example
To recap, the four ways you can reduce the impact of service URL changes are:

• Use named URL variables in your code.
• Move the URLs into client configuration files.
• Limit the number of URLs your client needs to know ahead of time.
• Get services to provide the URLs for you.

Using named URL variables
The following is an example of a code snippet showing the list of named URL vari‐
ables stored in client code:

// initializing named variables for service URLs
var serviceURLs = {};
serviceURLs.home = "http://service.example.org/";
serviceURLs.list = "http://service.example.org/list/";
serviceURLs.filter = "http://service.example.org/filter/";
serviceURLs.read = "http://service.example.org/list/{id}/";
serviceURLs.update = "http://service.example.org/list/{id}/";
serviceURLs.remove = "http://service.example.org/list/{id}/";
serviceURLs.approve = "http://service.example.org/{id}/status";
serviceURLs.close = "http://service.example.org/{id}/status";
serviceURLs.pending = "http://service.api.example.org/{id}/status";

/* later in your client code... */

// using named URL variables
const http = new XMLHttpRequest();

// Send a request
http.open("GET", serviceURLs.list);
http.send();

// handle responses
http.onload = function() {
 switch (http.responseURL) {
 case serviceURLs.home:
 ...
 break;
 ...
 }
}

Note that some URL values are shared for different names variables. This is often the
case when the important information is passed via an HTTP body and/or HTTP
method (e.g., HTTP PUT versus HTTP DELETE). You’ll also notice that some URLs
contain a templated value (e.g., http://api.example.org/list/{id}/). This means

104 | Chapter 4: Hypermedia Clients

that both client and server MUST share a similar standard for encoding templated
URLs. I recommend using libraries that conform to the IETF’s RFC 6570.

Loading named URL variables from configuration
Once you have your code set up for only using named URL variables, it is a short step
to moving all those URLs outside your codebase into a configuration file:

<html>
 <head>
 <script type="text/javascript"
 src="client.example.org/js/service-urls-config.js"></script>
 <script type="text/javascript">
 ...
 // using named URL variables
 const http = new XMLHttpRequest();

 // Send a request
 http.open("GET", serviceURLs.list);
 http.send();

 // handle responses
 http.onload = function() {
 switch (http.responseURL) {
 case serviceURLs.home:
 ...
 break;
 ...
 }
 }
 ...
 </script>
 </head>
 <body>
 ...
 </body>
</html>

The configuration file (which looks just like the code in the previous example) is
stored at the same location as the client code (http://client.example.org/js/). However,
it could be stored anywhere the client application can access, including a local file sys‐
tem that is supported by the client platform.

Limit memorized client URLs to one with hypermedia
If your service is using hypermedia formats that automatically supply URLs at run‐
time, you can limit the number of URLs your client application needs to know ahead
of time to possibly one URL: the starting or “home” URL. Then your client can “find”
any other URLs based on inline information found in id, name, rel, and/or tags (see
Recipe 5.1):

4.1 Limiting the Use of Hardcoded URLs | 105

https://oreil.ly/ApkCn

/* find-rel.js */
var startingURL = "http://service.example.org/";
var thisURL = "";
var link = {};

// using named URL variables
const http = new XMLHttpRequest();

// Send a request
http.open("GET", serviceURLs.list);
http.send();

// handle responses
http.onload = function() {
 switch (http.responseURL) {
 case startingURL:
 link = findREL("list");
 if(link.href) {
 thisURL = link.href;
 ...
 }
 ...
 break;
 ...
 }
}

Finally, if you can influence the service teams, try to convince them to either use
hypermedia types so that client applications need to remember only their starting
URL, or have the server team provide a remote configuration file that holds all the
named variables that define the static URLs the client will need.

Discussion
The best way to limit the client-side impact of service URL changes is to keep the
URLs out of the client application code. The most effective way to do that is for serv‐
ices to use hypermedia formats that provide URLs at runtime, or for services to pro‐
vide configuration information that contains a list of URLs as named variables. If you
can’t get that from the service, then it is up to the client application programmers to
come as close to that as possible. That means using a client-side configuration file or,
if loading configuration data is not viable (e.g., security reasons), then create your
own client-side named variable collection in code.

106 | Chapter 4: Hypermedia Clients

It is important to acknowledge that relying on client-side configu‐
ration files is not an ideal solution. Changes in service URLs need
to be communicated to the client developer so that the client-side
information (config or code) can be updated. This presents a possi‐
ble lag between service changes and client changes. You can set up
client-side monitoring of changes, but that’s just adding more work
and can only shorten the client application’s reaction time to unan‐
nounced changes.

It was noted earlier that some URL variables may share the same URL data, but have
very different uses. For example, the service URLs for read, update, and delete may be
the same (http://service.example.org/{id}). This leads to the next step of client applica‐
tions keeping the entire collection of request metadata in code, too (URL, method,
headers, query string, and/or body information). See Recipe 4.10 for more on this
option and when to use it.

See Also
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.10, “Supporting Links and Forms for Nonhypermedia Services”
• Recipe 5.1, “Publishing at Least One Stable URL”
• Recipe 7.8, “Returning All Related Actions”

4.2 Coding Clients to Be HTTP Aware
Sometimes helper libraries, wrappers, and/or API software developer kits (SDKs) can
make it harder for API client applications to solve their problems instead of making it
easier. For this reason it is important to make sure your API client applications are
able to “converse” with services in HTTP (or whatever the target protocol might be).

Problem
In cases where services offer help classes or SDKs, there are times when the client
cannot find the exact local function needed to solve a problem. How can you make
sure that client applications can work around any limitations of any helper libraries
or SDKs supplied by the service?

Solution
The best way to create API client applications that are both effective and nimble is to
make sure they are “protocol-aware”—that they can, when needed, speak directly to a
service using the HTTP protocol (or whatever protocol the service is using). To do
that, even when your client app takes advantage of SDKs and helper libraries, you

4.2 Coding Clients to Be HTTP Aware | 107

should make sure your client app also knows how to “speak HTTP” directly. That will
ensure your application can use the service in ways the original service authors had
not thought about when creating the initial release.

Clients Teaching Services
It is worth mentioning that service providers may learn a lot by monitoring the ways
client applications access their APIs (including the order in which the accesses are
made). In some cases, client applications will be teaching services the features and
workflows they wish to have. With this information, services can release new editions
that make those tasks safer and easier to complete.

It is perfectly acceptable to mix the use of available service SDKs with direct HTTP
calls when needed. In fact, it is a good idea to create your own high-level HTTP
library that can easily be invoked on demand.

Example
While most modern languages supply HTTP libraries and functions, it is a good idea
to create your own high-level HTTP support library. That means handling both the
HTTP request and HTTP response details. Here’s a simple example of a client-side
JavaScript helper library for HTTP calls:

var ajax = {

 // setup code here...

 /***
 *** PUBLIC METHODS ***
 args = {url:string, headers:{}, queryString:{}, body:{},
 callback:function, context:string}
 ***/
 httpGet: function(args) {...},
 httpGetXML: function(args) {...},
 httpGetJSON: function(args) {...},
 httpGetPlainText: function(args) {...},
 httpPost: function(args) {...},
 httpPostVars: function(args) {...},
 httpPostForXML: function(args) {...},
 httpPostForJSON: function(args) {...},
 httpPostForPlainText: function(args) {...},
 httpPut: function(args) {...},
 httpHead: function(args) {...},
 httpDelete: function(args) {...},
 httpOptions: function(args) {...},
 httpTrace: function(args) {...},

108 | Chapter 4: Hypermedia Clients

 // implementation details below ...
}

This library can then be called using the following code:

function getDocument(url) {
 var args = {};
 args.url = url;
 args.callbackFunction = ajaxComplete;
 args.context = "processLinks";
 args.headers = {'accept':'application/vnd.collection+json'}

 ajax.httpGet(args}

 // later ...

function ajaxComplete(response,headers,context,status,msg)
{
 switch(status) {...} // handle status
 switch(context) {...} // dispatch to context
}

This example is psuedocode from a client-side JavaScript implementation focused on
browser-based applications. The exact details of your library are not important. What
is important is that your client application can quickly and safely craft an HTTP
request and handle the HTTP response. Notice that the library is designed to make
HTTP calls easier to deal with and does not limit access to the protocol.

Discussion
Not only is it important to offer API client apps direct access to the HTTP protocol, it
is important to code the application so that the developer is always aware that HTTP
calls are taking place. It might seem like a good idea to “hide the HTTP” under
semantic methods like this:

var serviceClient = {
 findUser : function(userId) {...},
 assignUserWorkTickets(userId,ticketArray) {...}
}

The second call in this example (assignUserWorkTickets) might be a minefield. How
many HTTP calls are involved? Just one? Maybe one per item in the ticketArray?
Are the ticket calls sequential, or are they run in parallel? Developers should be able
to “see” what they are getting into when they use an SDK or library. Even something
as simple as changing the helper library calls from assignUserWorkTickets to
sendHttpRequests({ requestList:WorkTickets, parallel:true }) can help
developers get a sense of the consequences of their actions.

4.2 Coding Clients to Be HTTP Aware | 109

Also, an HTTP-aware API client doesn’t need to be complicated, either. Client-side
browser applications can get quite a bit done with the XMLHttpRequest object without
getting too deep into the weeds of HTTP. See Recipe 4.1 for an example.

The downside of using this approach is that some services might want to protect
themselves against inexperienced or possibly malicious client-side developers. They
want to use SDKs to control the way client applications interact with the service. This
never works to deter malicious actors and often just frustrates well-meaning develop‐
ers trying to solve their own problems in ways the service provider had not imagined.
I’ve seen many cases where client-side teams have abandoned an API because the
required SDK was deemed unsuitable.

See Also
• Recipe 4.1, “Limiting the Use of Hardcoded URLs”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 5.1, “Publishing at Least One Stable URL”
• Recipe 5.6, “Supporting HTTP Content Negotiation”
• Recipe 6.6, “Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries”
• Recipe 6.9, “Improving Performance with Caching Directives”

4.3 Coding Resilient Clients with Message-Centric
Implementations
To extend the life of the client application and improve its stability, it is a good idea to
code client applications to “speak” in well-known media types.

Problem
How can you ensure your client application is more resilient to small changes and not
coupled too tightly to a specific domain or running service?

Solution
A great way to build resilient client applications is to code your client app to bind
tightly to the message returned by the service, not to a particular service or domain
problem. That way, if there are minor changes in the service, as long as the media
type response stays the same, your client application is likely to continue to operate
correctly.

110 | Chapter 4: Hypermedia Clients

Example
You have lots of options when coding your API client. You can bind it directly to the
service and its documented objects, or you can bind your client to the structured
media types that the service emits. In almost all cases, it is better to bind to media
types than to service interface types.

Here is an example of a ToDo domain application. This client is implemented by
binding to all the actions described in the API documentation:

/* to-do-functions.js */
var thisPage = function() {
 function init() {}
 function makeRequest(href, context, body) {}
 function processResponse(ajax, context) {}
 function refreshList() {}
 function searchList() {}
 function addToList() {}
 function completeItem() {}
 function showList() {}
 function attachEvents() {}
};

The details of what goes on within each function are not important here. What is key
is that each action in the domain (refresh, search, add, etc.) is described in the
source code of the client. When the service adds any new features (e.g., the ability to
setDueDate for a task), this client application code will be out-of-date and will not be
able to adapt to the new feature. And it would be more challenging if the details
changed, such as arguments or other action metadata (e.g., change POST to PUT, mod‐
ify the URLs, etc.).

Now, look at the following client that is focused on a message-centric coding model.
In this case, the code is not focused on the ToDo domain actions but on the messages
(e.g., HTML, HAL, SIREN, etc.) the client sends and receives. In fact, this message-
centric approach would be the same no matter the service domain or topic:

/* to-do-messages.js */
var thisPage = function() {
 function init() {}
 function makeRequest(href, context, body) {}
 function processResponse(ajax, context) {}
 function displayResponse() {}
 function renderControls() {}
 function handleClicks() {}
};

Again, details are missing but the point here is that the functionality of the client
application is rooted in the work of making requests, processing the response mes‐
sage, displaying the results, the input controls, and then catching any click events.
That’s it. The actual domain-specific actions (refresh, search, add, etc.) will be

4.3 Coding Resilient Clients with Message-Centric Implementations | 111

described in the response message via hypermedia control, not the code. That means
when the service adds a new feature (like the setDueDate operation), this client will
“see” the new actions described in the message and automatically render that action.
There will be no need to write new code to support new operations.

Binding to the message means that new actions and most modifications of existing
actions are “free”—there is no need for additional coding.

Discussion
Shifting your client code from domain specific to message centric is probably the
more effective way to create resilient applications for the web. This is the approach of
the HTML-based web browser, which has been around for close to 30 years without
any significant interface changes. This is despite the fact that the internal coding for
HTML browsers has been completely replaced more than once, there are multiple,
competing editions of the browser from various vendors, and the features of HTML
have changed over time, too.

Much like the recipe to make your API clients “HTTP-aware” (see Recipe 4.2), mak‐
ing them message centric adds an additional layer of resilience to your solution. As
we’ll see later in this chapter (see Recipe 4.5), there are more layers to this “client
resilience cake” to deal with, too. Each layer added creates a more robust and stable
foundation upon which to build your specific solution.

One of the downsides of this approach is that it depends on services to properly sup‐
port strong typed message models for resource responses (see Recipe 4.3). If the ser‐
vice you need to connect with only responds with unstructured media types like XML
and JSON, it will be tough to take advantage of a message-centric coding model for
your client applications. If you have any influence over your service teams (e.g.,
you’re in a corporate IT department), it can really pay dividends if you can convince
them to use highly structured media types like HTML, HAL, SIREN, Collection
+JSON, and others. See Chapter 3 for several recipes focused on the value of media
types as a guiding principle for web services.

See Also
• Recipe 3.1, “Creating Interoperability with Registered Media Types”
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 4.2, “Coding Clients to Be HTTP Aware”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 4.6, “Managing Representation Formats at Runtime”

112 | Chapter 4: Hypermedia Clients

4.4 Coding Effective Clients to Understand
Vocabulary Profiles
Just as it is important to code clients to be able to “speak” HTTP and bind to message
formats, it is also important to code your client applications to be able to “converse”
in the vocabulary of the service and/or domain. To do that, you need to code client
applications to recognize and utilize domain vocabularies expressed as external pro‐
file documents.

Problem
How can you make sure that your client application will be able to “understand” the
vocabulary (names of call properties and actions) of the services it will interact with,
even when some of the services themselves might change over time?

Solution
To make sure clients and servers are “talking the same language” at runtime, you
should make sure both client and server are coded to understand the same vocabu‐
lary terms (e.g., data names and action names). You can accomplish this by relying on
one of the well-known vocabulary formats, including:

• RDF, Resource Description Framework Schema
• OWL, Web Ontology Language
• DCAP, Dublin Core Application Profiles
• ALPS, Application-Level Profile Semantics

Since I am a coauthor on the ALPS specification, you’ll see lots of examples of using
ALPS as the vocabulary standards document. You may also be using a format not lis‐
ted here—and that’s just fine. The important thing is that you and the services your
client application interacts with agree on a vocabulary format as a way to describe the
problem domain.

Example
Expressing a service’s domain as a set of vocabulary terms allows both client and ser‐
vice to share understanding in a generic, stable manner. This was covered in Recipe
3.4. Here’s a set of vocabulary terms for a simple domain:

Simple ToDo

Purpose
We need to track 'ToDo' records in order to improve both timeliness
and accuracy of customer follow-up activity.

4.4 Coding Effective Clients to Understand Vocabulary Profiles | 113

https://oreil.ly/GX41I
https://oreil.ly/TSviq
https://oreil.ly/eR9Px
https://oreil.ly/eTVa2

Data
In this first pass at the application, we need to keep track of the
following data properties:

 * **id** : a globally unique value for each ToDo record
 * **body** : the text content of the ToDo record

Actions
This edition of the application needs to support the following operations:

 * **Home** : starting location of the service
 * **List** : return a list of all active ToDo records in the system
 * **Add** : add a new ToDo record to the system
 * **Remove** : remove a completed ToDo record from the system

Next, after translating that story document into ALPS, it looks like this:

{
 "$schema":"https://alps-io.github.io/schemas/alps.json",
 "alps" : {
 "version":"1.0",
 "title":"ToDo List",
 "doc" : {"value":"ALPS ToDo Profile (see [ToDo Story](to-do-story.md))"},

 "descriptor":[
 {"id":"id", "type":"semantic", "tag":"ontology"},
 {"id":"title", "type":"semantic", "tag":"ontology"},

 {"id":"home", "type":"semantic", "tag":"taxonomy",
 "descriptor": [{"href":"#goList"}]
 },

 {"id":"list", "type":"semantic", "tag":"taxonomy",
 "descriptor":[
 {"href":"#id"},
 {"href":"#title"},
 {"href":"#goHome"},
 {"href":"#goList"},
 {"href":"#doAdd"},
 {"href":"#doRemove"}
]
 },

 {"id":"goHome", "type":"safe", "rt":"#home", "tag":"choreography"},
 {"id":"goList", "type":"safe", "rt":"#list", "tag":"choreography"},
 {"id":"doAdd", "type":"unsafe", "rt":"#list", "tag":"choreography",
 "descriptor": [{"href":"#id"},{"href":"#title"}]},
 {"id":"doRemove", "type":"idempotent", "rt":"#list", "tag":"choreography",
 "descriptor": [{"href":"#id"}]}
]
 }
}

114 | Chapter 4: Hypermedia Clients

This ALPS document contains all the possible data elements and action elements,
along with additional metadata on how to craft requests to the service and what to
expect in response. This ALPS document can be the source material for creating cli‐
ent applications that will be able to successfully interact with any service that supports
this profile. This is especially true for services that support hypermedia responses.

For example, assuming a ToDo-compliant service is running at localhost:8484, a
ToDo-compliant client might do the following:

data to work with
STACK PUSH {"id":"zaxscdvf","body":"testing"}

vocabulary and format supported
CONFIG SET {"profile":"http://api.examples.org/profiles/todo-alps.json"}
CONFIG SET {"format":"application/vnd.mash+json"}

write to service
REQUEST WITH-URL http://api.example.org/todo/list WITH-PROFILE WITH-FORMAT
REQUEST WITH-FORM doAdd WITH-STACK
REQUEST WITH-LINK goList
REQUEST WITH-FORM doRemove WITH-STACK
EXIT

Check out Appendix D for a short review of how to program in
HyperLANG with the HyperCLI.

Note that the client only needs to know the starting URL, along with the names of the
actions (doAdd, goList, and doRemove) and the names of the data properties (id and
body). The client also needs to tell the service what vocabulary (profile) and media
type (format) will be used during the interaction. These are all decisions made when
coding the application. With that done, the remainder of the script invokes actions
and sends data that the client knows ahead of time will be valid—based on the pub‐
lished vocabulary. Since, in this case, the service is known to support hypermedia
responses, the client can safely assume that the vocabulary links and forms will be
found in the service response and coded accordingly.

Discussion
Vocabulary documents are the glue that binds API producers and API consumers
without resorting to tight coupling. As we have seen in the last example, reliance on
clear vocabularies and well-known media type formats does a great deal to reduce the
coupling between client and service without losing any detail.

4.4 Coding Effective Clients to Understand Vocabulary Profiles | 115

Services often publish API definition documents (e.g., OpenAPI, AsyncAPI, RAML,
etc.). This is handy for people who want to implement a single instance of the API
service, but it has limited value for API consumers. When API client applications use
the service implementation specification to create an API consumer, that application
will be tightly bound to this particular service implementation. Any changes to the
service implementation are likely to break that client application. A better approach is
to bind the API consumer to a published profile document instead.

If the service you are working with does not publish a stable vocabulary document, it
is a good idea to create your own. Use the API definition documentation (OpenAPI,
etc.) as a guide to craft your own ALPS document (or some other format, if you
wish), and then publish that document for your team (and others) to use when creat‐
ing an API client for that service. It is also a good idea to include that ALPS document
in your client application’s source code repository for future reference.

As shown in the last example, you get the greatest benefit of vocabulary profiles when
the service you are working with returns hypermedia responses. When that is not the
case (and you don’t have the ability to influence the service teams), you can still code
your client as if hypermedia was in the response (see Recipe 4.10 for details).

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 4.5, “Negotiating for Profile Support at Runtime”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.9, “Publishing Service Definition Documents”

4.5 Negotiating for Profile Support at Runtime
Client applications that depend on services that provide responses using pre-
determined semantic profiles need a way to make sure those services will be “speak‐
ing” in the required vocabulary.

Problem
You’ve coded your client to work with any service that complies with, for example,
the ToDo semantic profile. How can you confirm—at runtime—that the service you
are about to use supports the to-do vocabulary?

116 | Chapter 4: Hypermedia Clients

https://oreil.ly/uyE9c
https://oreil.ly/gcOVb
https://oreil.ly/9AKUs

Solution
A client application can dependably check for semantic profile support in a service
using the “profile negotiation” pattern. Clients can use the accept-profile request
header to indicate the expected semantic profile, and services can use the content-
profile response header to indicate the supporting semantic profile.

Like content negotiation (see Recipe 5.6), profile negotiation allows clients and
servers to share metadata details about the resource representation and make deci‐
sions on whether the server’s response is acceptable for the client. When services
return resource profiles that do not match the client’s request, the client can reject the
response with an error, request more information from the server, or continue
anyway.

Example
Clients can determine the supported semantic profiles for a service resource in a
number of ways. Profile negotiation is the most direct way for clients to indicate and
validate a service’s profile support.

The following is a simple example of profile negotiation:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept-Profile: <http://profiles.example.org/to-do>

*** RESPONSE
HTTP/2.0 200 OK
Content-Profile: http://profiles/example.org/to-do

...

In this example, the client uses the accept-profile header to indicate the desired
vocabulary, and the service uses the content-profile header to tell the client what
profile was used to compose the resource representation that was returned.

Servers may also return a 406 HTTP status code (Not Acceptable) when a client
requests a semantic profile the service does not support. When doing so, the service
should return metadata that indicates which profiles that service is prepared to sup‐
port instead:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept-Profile: <http://profiles.example.org/to-do/v3>

*** RESPONSE

4.5 Negotiating for Profile Support at Runtime | 117

HTTP/2.0 406 Not Acceptable
Content-Type: application/vnd.collection+json

{ "collection":
 {
 "links" : [
 {"rel":"profile", "href":"http://profiles.example.org/todo/v1"},
 {"rel":"profile", "href":"http://profiles.example.org/todo/v2"},
]
 },
 "error" : {
 "title" : "Unsupported Profile",
 "message" : "See links for supported profiles for this resource."
 }
}

It is also possible for services to provide a way for client applications to preemptively
request details on the supported semantic profiles. To do this, services can offer one
or more links with the relation value of “profile,” with each link pointing to a sup‐
ported semantic profile document. For example:

{ "collection":
 {
 "title" : "Supported Semantic Profiles",
 "links" : [
 {"rel":"profile", "href":"http://profiles.example.org/todo/v1"},
 {"rel":"profile", "href":"http://profiles.example.org/todo/v2"},
 {"rel":"profile", "href":"http://profiles.example.org/todo/v3"}
]
 }
}

These links can appear in any resource representation that supports that profile. Even
when only one semantic profile is supported, it is a good idea to emit profile links in
responses to help clients (and their developers) recognize the supported vocabularies.
In this case, clients can look at the collection of profile links to see if their semantic
profile identifier is among those listed in the response.

The list of supported profiles can be reported as HTTP headers too:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept-Profile: <http://profiles.example.org/to-do/v3>

*** RESPONSE
HTTP/2.0 406 Not Acceptable
Content-Type: application/vnd.collection+json
Links <http://profiles.example.org/todo/v3>; rel="profile",
<http://profiles.example.org/todo/v2>; rel="profile",
<http://profiles.example.org/todo/v1>; rel="profile"

118 | Chapter 4: Hypermedia Clients

Discussion
It’s a good idea for client applications that are “coded to the profile” to validate all
incoming responses to make sure the client will be able to process the resource cor‐
rectly. Since servers may actually report more than one profile link in responses, cli‐
ent applications should assume all profile metadata is reported as a collection and
search for the desired profile identifier within that collection.

Negotiating for semantic profiles with accept-profile and content-profile is not
very common. The specification that outlines that work is still a draft document and,
as of this writing, the most recent WC3 work on profiles is still a work in progress.
However, within a closed system (e.g., enterprise IT), implementing profile negotia‐
tion can be a good way to promote and encourage the use of semantic profiles in
general.

I don’t recommend getting too granular with identifying semantic profile versions
(v1, v1.1, v1.1.1, etc.), as it only makes for more work at runtime for both client appli‐
cations and remote services. When changes to profiles need to be made, it is a good
idea to keep the variations backward compatible for as long as possible. If a profile
update results in a breaking change, you should update the identifier to indicate a
new version (v1 → v2).

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.8, “Supporting Shared Vocabularies in Standard Formats”

4.6 Managing Representation Formats at Runtime
Client applications that need to interact with more than one service may need to be
coded to “converse” in more than one message format (HTML, HAL, SIREN, Collec‐
tion+JSON, etc.). That means recognizing and dealing with multiple message formats
at runtime.

Problem
How do client applications that need to be able to process more than one message
type request and validate the message types they receive from services and process
information from varying formats consistently?

4.6 Managing Representation Formats at Runtime | 119

https://oreil.ly/iBy3h
https://oreil.ly/geeWl

Solution
Applications that operate should be able to manage the resource representation for‐
mats (HTML, HAL, SIREN, Collection+JSON, etc.) using the HTTP Accept and
Content-Type headers. This focus on message-centric coding (see Recipe 4.3) will
give stability to your client code without banding it closely to the specific domain of
the service(s) you are using.

Media Type First Development
The first step in managing message formats on the web is to take advantage of
HTTP’s Accept and Content-Type headers to signal format preferences to the service
and to validate the representation format returned by the service.

Whenever your client makes an API request, you should include an HTTP Accept
header to indicate the structured format(s) your application “understands.” Then,
when the server replies, you should check the Content-Type header to confirm which
of your supported formats was returned. If the format returned is not one your client
can handle, you should stop processing and report the problem. In human-driven
apps, this is usually done with a pop-up message or inline content. For M2M apps,
this can be done as an error message back to the calling machine and/or a log mes‐
sage sent to some supervising authority:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json

*** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
...

The client applications also need to be coded in a way that creates a separation of con‐
cern (SoC) between the message formats exchanged with services and the internal
representation of the information. When the server returns a response, the client
application can route the message body to the proper handler for processing. This is
where the message is translated into an internal model that the client application can
use to inspect and manipulate the response.

That means implementing the Message Translator pattern internally so that clients
can consistently translate between internal object models and external messages.

120 | Chapter 4: Hypermedia Clients

Example
Here is an example of code that validates the media type of the service response and
handles it accordingly:

function handleResponse(ajax,url) {
 var ctype
 if(ajax.readyState===4) {
 try {
 ctype = ajax.getResponseHeader("content-type").toLowerCase();
 switch(ctype) {
 case "application/vnd.collection+json":
 cj.parse(JSON.parse(ajax.responseText));
 break;
 case "application/vnd.siren+json":
 siren.parse(JSON.parse(ajax.responseText));
 break;
 case "application/vnd.hal+json":
 hal.parse(JSON.parse(ajax.responseText));
 break;
 default:
 dump(ajax.responseText);
 break;
 }
 }
 catch(ex) {
 alert(ex);
 }
 }
}

Notice that the client can “converse” in three message formats: Collection+JSON,
SIREN, and HAL. If the service returns anything else, the application sends it to the
dump() routine for additional processing.

Discussion
Organizing your client code to be driven by message formats works best when serv‐
ices support highly structured formats like HTML, HAL, SIREN, Collection+JSON,
etc. When services use unstructured response formats like XML and JSON, you’ll
need additional metadata to support message-driven client code. In that case, schema
documents like XML Schema and JSON Schema can be handy. See Recipe 4.7 for
more on using schema documents on the client side.

Recognizing the incoming message format is just the first step. You also need to be
able to parse and often translate that message for internal use. For web browsers, you
can build a single JavaScript library that converts incoming JSON formats (HAL,
SIREN, Collection+JSON) into HTML for rendering. The following are the high-level
methods for converting JSON-based API messages into HTML:

4.6 Managing Representation Formats at Runtime | 121

https://oreil.ly/aVNKK
https://oreil.ly/Qwi4k

 // collection+JSON-->HTML
function parse(collection) {
 var elm;

 g.cj = collection;

 title();
 content();
 links();
 items();
 queries();
 template();
 error();

 elm = d.find("cj");
 if(elm) {
 elm.style.display="block";
 }
}

// HAL --> HTML
function parse(hal) {
 g.hal = hal;

 title();
 setContext();
 if(g.context!=="") {
 selectLinks("app", "toplinks");
 selectLinks("list", "h-links");
 content();
 embedded();
 properties();
 }
 else {
 alert("Unknown Context, can't continue");
 }

 elm = d.find("hal");
 if(elm) {
 elm.style.display="block";
 }
 }

// SIREN --> HTML
function parse(msg) {
 var elm;

 g.siren = msg;

 title();
 getContent();
 links();

122 | Chapter 4: Hypermedia Clients

 entities();
 properties();
 actions();

 elm = d.find("siren");
 if(elm) {
 elm.style.display="block";
 }
}

Each message parser is designed specifically to convert the selected message format
into HTML to render in the browser. This is an implementation of the Message
Translator pattern. Writing these one-way translators is not very challenging for
highly structured formats. Since the target (HTML) is not domain specific, a single
translator can be effective for any application topic or domain. I always keep a stable
browser-based media type parser on hand for quickly building rendering applications
for services that use these formats.

The work gets more challenging if you need to translate the incoming message into a
domain-specific internal object model or graph. In these cases, it’s a good idea to use
other metadata like semantic profiles (see Recipe 4.4) or schema documents (see
Recipe 4.7) as your guide for translating the incoming message.

The work gets exponentially more difficult when all your client has to work with is an
unstructured document like XML or JSON and there is no reliable schema or profile
supplied. In these cases, you’ll need to spend time creating custom-built translators
based on the human-readable documentation. It is also likely that small changes in
the documentation can cause big problems for your custom-built translator.

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 5.6, “Supporting HTTP Content Negotiation”

4.7 Using Schema Documents as a Source of
Message Metadata
When services do not support semantic profiles or structured media types, client
applications may still be able to code to a semantic specification if that service returns
references to schema documents that describe the contents of the message:

4.7 Using Schema Documents as a Source of Message Metadata | 123

https://oreil.ly/Q3Pan
https://oreil.ly/Q3Pan

• Use schema where profiles and media types are not sufficient or are missing
• Do not use schema documents to validate incoming messages
• Do use schema to validate outgoing messages

Problem
How can we build resilient client applications based on message schema for unstruc‐
tured media types (XML or JSON) instead of semantic profiles?

Solution
In cases where services consistently return schema documents with unstructured
messages formats (XML or JSON) as runtime responses, you may be able to code a
resilient client application without the support of semantic profiles. To do this, you
need to organize client code that is driven solely by schema information.

The most common examples of these schema formats are XML Schema and JSON
Schema.

Example
When services provide them, you can also use schema documents as additional meta‐
data information for the incoming message. This works best when the response itself
contains a pointer to the schema. At runtime, it is not a good idea to validate incom‐
ing messages against a schema document unless you plan on rejecting invalid inputs
entirely. Usually, runtime responses will have minor differences (e.g., added fields not
found in the schema, rearranged order of elements in the response, etc.), and these
minor changes are not good reasons to reject the input. However, it is handy to use
the provided schema URI/URL as an identifier to confirm that the service has
returned a response with the expected semantic metadata.

Using schema documents to validate incoming messages runs
counter to Postel’s Law, which states: “be conservative in what you
do, be liberal in what you accept from others.” Strong typing
incoming messages (instead of “be[ing] liberal in what you accept”)
is likely to result in rejected responses that might otherwise work
well for both client and server. The specification document RFC
1122, authored by Robert Braden, goes into great detail on how to
design and implement features that can safely allow for minor var‐
iations in message and protocol details. See Recipes 4.12 and 4.13
for more on this challenge.

124 | Chapter 4: Hypermedia Clients

https://oreil.ly/aVNKK
https://oreil.ly/Qwi4k
https://oreil.ly/Qwi4k
https://oreil.ly/VWvC6
https://oreil.ly/kSM3w
https://oreil.ly/kSM3w

Negotiating for schemas
It is possible for client applications to engage in schema negotiation with the service.
This is useful when both client and server know ahead of time that there are multiple
editions of the same general schema (user-v1, user-v2, etc.) and you want to confirm
both are working with the same edition. An expired proposal from the W3C sug‐
gested the use of accept-schema and schema HTTP headers:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept-Schema: <urn:example:schema:e-commerce-payment>

*** RESPONSE
HTTP/1.1 200 OK
Schema: <urn:example:schema:e-commerce-payment
...

I’ve not encountered this negotiation approach “in the wild.” If it is offered by a ser‐
vice, it is worth looking into as a client developer—any semantic metadata is better
than none.

Schema identifier in the Content-Type header

The schema identifier may also be passed from server to client in the Content-Type
header:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept: application/vnd.hal+json

*** RESPONSE
HTTP/1.1 200 OK
Content-Type: \
 application/vnd.hal+json;schema=urn:example:schema:e-commerce-payment
...

It is important to point out that adding additional facets (those after the “;”) to the
media type string can complicate message format validation. Also, some media type
definitions expressly forbid including additional metadata in the media type identi‐
fier string (for example, JSON has this rule).

Schema identifier in the document
It is most common to see the schema identifier provided as part of the message body:

{
 "$schema":"https://alps-io.github.io/schemas/alps.json",
 "alps" : {
 "version":"1.0",

4.7 Using Schema Documents as a Source of Message Metadata | 125

https://oreil.ly/f2jS2

 "title":"ToDo List",
 "doc" : {"value":"A suggested ALPS profile for a ToDo service"},
 "descriptor":[
 {"id":"id", "type":"semantic", "def":"http://schema.org/identifier"},
 {"id":"title", "type":"semantic", "def":"http://schema.org/title"},
 {"id":"completed", "type":"semantic",
 "def":"http://mamund.site44.com/alps/def/completed.txt"}
]
 }
}

The schema identifier does not need to be a dereferenceable URL (https://alps-
io.github.io/schemas/alps.json). It may just be a URI or URN identifier string
(urn:example:schema:e-commerce-payment). The value of using a dereferenceable
URL is that humans can follow the link to get additional information.

Coding schema-aware clients
Once you know how to identify schema information, you can use it to drive your cli‐
ent application code:

function handleSchema(ajax,schemaIdentifier) {
 var schemaType
 try {
 schemaType = schemaIdentifier.toLowerCase()
 switch(ctype) {
 case "https://api.example.com/schemas/task":
 task.parse(JSON.parse(ajax.responseText));
 break;
 case "https://api.example.com/schemas/task-v2":
 task.parse(JSON.parse(ajax.responseText));
 break;
 case "https://api.example.com/schemas/user":
 case "https://api.example.com/schemas/user-v2":
 user.parse(JSON.parse(ajax.responseText));
 break;
 case "https://api.example.com/schemas/note":
 note.parse(JSON.parse(ajax.responseText));
 break;
 default:
 dump(ajax.responseText);
 break;
 }
 }
 catch(ex) {
 alert(ex);
 }
}

Note that organizing code around schema definitions is often much more work than
relying on semantic profile formats like ALPS. Schemas are usually domain specific
and are more likely to change over time than semantic profiles. In this example, you

126 | Chapter 4: Hypermedia Clients

https://alps-io.github.io/schemas/alps.json
https://alps-io.github.io/schemas/alps.json

can see that there are two (apparently) incompatible schema references for the task
object. Also, the example shows that while there are two different user schema docu‐
ments, they are (at least as far as this client is concerned) compatible versions.

Discussion
The primary value of schema documents comes into play when you are creating and
sending messages (see Recipe 4.12). However, client applications can also use the
schema document identifiers themselves (URLs or URIs) as advisory values for pro‐
cessing incoming messages. Essentially, schema identifiers become confirmation val‐
ues that the response received by the client will contain the information the client will
need to perform its work.

I won’t be talking about maintaining schema registries in this edi‐
tion of the cookbook. I do, however, cover the power of registered
vocabularies (much less constrained than schema documents) in
Recipes 3.4 and 4.4.

Negotiating for schema identifiers has limited value as well. It can be a good way for
clients to preemptively tell services what schema they can support. This allows serv‐
ices to reject requests using HTTP status code 406 Not Acceptable. But this, too,
runs afoul of Postel’s Law.

Client applications that are coded to be “schema aware” are likely to be more of a
challenge than client applications coded as “media type aware” (see Recipe 4.3) or
“profile aware” (see Recipe 4.4). That is because schema documents typically are at a
much more granular level (objects), and object schema usually changes more often
than the overall vocabulary or message formats.

JSON Schema has a feature that allows for successful validation of a sample document
even if that document contains additional properties not found in the schema (addi
tionalProperties:true|false). By default, this is set to true, which allows for
additional properties to appear without triggering a schema validation error. Also,
altering the order of the properties within an object will not trigger a schema valida‐
tion error.

Including “unknown” properties in an incoming message is not, by
itself, a security problem. For example, this can be quite common
in the HTML format. However, attempting to consume and process
unknown properties may be a security hole. As you’ll see in Recipe
4.13, it is best for client applications to ignore unknown properties
and only process the values the application was designed to deal
with.

4.7 Using Schema Documents as a Source of Message Metadata | 127

In XML documents, schema validators are rather demanding. To be passed as valid,
the elements within the XML messages need to be in the same order as indicated in
the schema document, and in most cases, the appearance of a new element or prop‐
erty will trigger a validation error.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 4.13, “Using Document Queries to Validate Incoming Messages”

4.8 Every Important Element Within a Response
Needs an Identifier
Just as every important resource in a RESTful API has an identifier (URL), every
important action and/or data element within a response deserves its own identifier. A
client needs to be able to locate the right resource, and find and use the right action or
data collection in the resource response.

Problem
How do you make sure that client applications can find the actions and/or data they
are looking for within a response? In addition, how can you make sure the ability to
find these important elements doesn’t degrade over time as the service evolves?

Solution
The key to ensuring stable, meaningful identifiers within API responses is to select
media types that support a wide range of identifier types as structural elements.
HTML does a good job at this. I created the Machine Accessible Semantic Hyperme‐
dia (MASH) format as an example of a media type that supports multiple structural
identifiers.

The four kinds of identifiers are:

ID

A document-wide unique single-value element (e.g., id=1q2w3e4r)

NAME

An application-wide unique single-value element (e.g., name=createUserForm)

128 | Chapter 4: Hypermedia Clients

REL

A system-wide unique multivalue element (e.g., rel=create-form self)

TAG

A solution-specific nonunique multivalue element (e.g., tag=users page-level)

Another example of the last item (solution-specific nonunique multivalue element) is
the HTML CLASS element.

Client applications should be coded to be able to find the desired FORM, LINK, or
DATA block using at least one of these types of identifiers.

Example
For an example of the importance of using media types that support structured iden‐
tifiers, consider the following challenge:

1. Access the starting URL of the users service .
2. Within the response to that request, find the form for searching for existing

users.
3. Fill out the form to find the user with the nickname “mingles,” and execute the

request.
4. Store the resulting properties of this response to client memory.
5. Within the response to that request, find the form for updating this resource.
6. Using the data in the response, fill in the update form, change the email address

to “mingles@example.org,” and execute the request.

While we, as humans, could do this rather easily (e.g., in an HTML browser), getting
a machine to do this takes some additional effort. Consider, for example, that you
need to update the email addresses of 10 or more user accounts. Now add to this
challenge that you need to deal with multiple versions of the user service, or one that
uses multiple response formats, or one that has evolved over time. In these cases, the
client might use a script like this:

hyper-cli example

ECHO Updating email address for mingles

ACTIVATE http://api.example.org/users

ACTIVATE WITH-FORM nickSearch
 WITH-QUERY {"nick":"mingles"}

ACTIVATE WITH-FORM userUpdate
 WITH-BODY {"name":"Miguelito","nick":"mingles","email":"mingles@example.org"}

4.8 Every Important Element Within a Response Needs an Identifier | 129

mailto:mingles@example.org

ACTIVATE WITH-FORM emailSearch
 WITH-QUERY {"email":"mingles@example.org"}

ECHO Update Confirmed

EXIT

eof

Check out Appendix D for more on how to use the HyperCLI and
HyperLANG as a hypermedia client application.

Note in this example that the client application is relying on identifiers for three
actions (nickSearch, userUpdate, and emailSearch) and for a collection of proper‐
ties (name, nick, and email). The actual representation format (HTML, MASH,
SIREN, etc.) does not matter for the script—that is handled internally by the client.
Also note that the only URL supplied is the initial one to contact the service. The rest
of the URLs are supplied in the responses (as part of the forms).

Discussion
Most HTTP design practices make it clear that every resource deserves its own identi‐
fier (in the form of a URL). This is easy to see when you look at typical HTTP API
requests:

http://api.example.org/customers/123
http://api.example.org/users?customer=123

This is also true when it comes to describing interactions within a single response.
For example, consider the following response from /users?customer=123:

{
 "id": "aqswdefrgt",
 "href": "http://api.example.org/customers/123",
 "name": "customer-record",
 "rel": "item http://rels.example.org/customer",
 "tags": "item customer read-only",
 "data": [
 "identifier": "123",
 "companyName": "Ajax Brewing",
 "address": "123 Main St, Byteville, MD",
 "users": "http://api.example.org/users?customer=123"
]
}

Note that the record metadata is as follows:

130 | Chapter 4: Hypermedia Clients

id

A document-wide unique ID that clients can use to locate this record in any list

href

A system-wide URL that clients can use to retrieve this record from the service

name

A semantic application-wide name that clients can use to return records of this
“type”

rel

A collection of system-wide names that clients can use to return records of this
“type” or instance

tags

A collection of application-wide names that clients can use to filter records in
various ways

The added href example here shows that the system-wide identifier (http://api.exam
ple.org/customers/123) does not need to be the same as the internal id (aqswdefrgt).
In fact, it is a good idea to assume they are decoupled in order to avoid problems
when the URL changes due to service migration, installation of new proxies, etc.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 5.4, “Expressing Internal Functions as External Actions”

4.8 Every Important Element Within a Response Needs an Identifier | 131

http://api.example.org/customers/123
http://api.example.org/customers/123

• Recipe 5.14, “Increasing Throughput with Client-Supplied Identifiers”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

4.9 Relying on Hypermedia Controls in the Response
One of the principles of REST-based services is the reliance on “hypermedia as engine
of application state” or, as Roy Fielding has called it, “The Hypermedia Constraint.”
Services that emit hypermedia formats as their responses make it much easier for cli‐
ent applications to determine what actions are possible—and how to commit those
actions—at runtime. And the hypermedia information that appears within a response
can be context sensitive. Context examples include the current state of the service
(does a record already exist?), the user context (does this user have permission to edit
the record?), and the context of the request itself (has someone else already edited
this data?).

Problem
When service providers are emitting hypermedia-based responses, how can the API
consumer best take advantage of the included information to improve both the
human-agent and machine-agent experience?

Solution
It is best to write API consumers to “understand” response formats (see Recipe 4.3 in
this chapter). In the case of hypermedia types, each format has its own “hypermedia
signature”—the list of hypermedia elements (called hypermedia factors or H-Factors)
that this media type can express. Creating client applications that know the media
type and understand the nine H-Factors will greatly improve the flexibility and resil‐
ience of the client application. Nine H-Factors can appear within a RESTful service
response, which is described in Tables 4-1 and 4-2.

Table 4-1. Five link factors
Title Description Example

LE Link Embedded Brings content into the current view HTML tag

LO Link Outbound Navigates the client to a new view HTML <a /> tag

LT Link Template Supports additional parameters before
executing

URI templates http://example.org/users?
{id}

LN Link Nonidempotent Describes a nonidempotent action <FORM method=POST …>

LI Link Idempotent Describes an idempotent action SIREN "actions":[{"name":"update-
item","method":"put" …}]

132 | Chapter 4: Hypermedia Clients

https://oreil.ly/WQfg1

Table 4-2. Four control factors
Title Description Example

CR Control for Read Requests Describes read details Accept:application/vnd.hal+json

CU Control for Update Requests Describes write details enctype="application/x-www-form-
urlencoded"

CM Control for HTTP Methods Describes the HTTP method to use <FORM method="GET" … >

CL Control for Link Relations Describes the link relation for an
action

<link rel="create-form" … />

Each hypermedia format has its own H-Factor signature.

In Figure 4-2, you can see three media types: SVG, Atom, and HTML. Note that the
SVG format only supports the LE and LO factors. SVG, for example, supports
embedded links like <IMAGE href="…"…>, and outbound links such as Go Home.

Figure 4-2. Visualizing the hypermedia factors of various media types

Example
Knowing which formats your client is likely to encounter allows the client to recog‐
nize and, where appropriate, offer options to human- and machine-driven agents in
order for them to accomplish tasks.

For example, the HyperCLI client (see Appendix D) supports a number of hyperme‐
dia formats. When using a format like SIREN, you can script the HyperCLI client to
add, search, modify, or remove content based on the hypermedia controls in the
responses. The following is a short SIREN script written in HyperLANG:

#
SIREN Edit Session
read a record, save it, modify it, write it back to the server
#

** make initial request
REQUEST WITH-URL http://rwcbook10.herokuapp.com

4.9 Relying on Hypermedia Controls in the Response | 133

** retreive the first record in the list
REQUEST WITH-PATH $.entities[0].href

** push the item properties onto the stack
STACK PUSH WITH-PATH $.properties

** modify the tags property value on the stack
STACK SET {"tags":"fishing,\.\skiing,\.\hiking"}

** use the supplied edit form and updated stack to send update
REQUEST WITH-FORM taskFormEdit WITH-STACK

** confirm the change
SIREN PATH $.entities[0]

** exit session
EXIT

See Appendix D for a short introduction to programming in
HyperLANG with the Hyper CLI.

Note that in this example, only the starting URL was supplied. The remaining actions
were committed by relying on the hypermedia metadata supplied in each service
response.

Discussion
This recipe covers the principle of using that hypermedia data to solve problems
directly. It relies on details supplied by services and, for that reason, this recipe is only
helpful when services support hypermedia formats in the response.

The advantage of relying on supplied hypermedia in your scripts is that you reduce
the amount of hardcoding you need to do within your client application. You can
make it easier for services to modify hypermedia details (e.g., URLs, HTTP methods,
supported formats, etc.) without breaking the client application. In the preceding
example, the script does not hardcode the HTTP URL, method, or encoding type for
the taskFormEdit action. It simply uses the details supplied by the service.

This recipe works best when the client application understands not only the response
format (e.g., SIREN) but also the semantic profile (the topic domain) used by the
service. For instance, in the preceding example, the client knows ahead of time that
there is a possible taskFormEdit hypermedia control that it can use to modify an
existing record. See Recipe 4.4 for more on semantic profiles.

134 | Chapter 4: Hypermedia Clients

The H-Factor signature of hypermedia formats varies widely and will affect how
hardcoding is (or is not) required for an API client. For example, the SIREN format
supports the full range of H-Factors, and HAL supports just a few of them. In con‐
trast, a nonhypermedia format like application/json supports no built-in H-
Factors, making it difficult to write a resilient API client for services that support only
plain JSON responses.

In general, the more H-Factors supported by a media type, the more likely you can
write an API client that will survive changes in hypermedia details in the future.

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.7, “Using Media Types for Data Queries”

4.10 Supporting Links and Forms for
Nonhypermedia Services
There are times when you need to interact with services that do not offer clear links
and forms—hypermedia-style responses. There is a handy approach you can take on
the client side to make up for this lack of support.

Problem
How can you get the advantages of API decoupling and the clearly described interac‐
tions available with hypermedia-style responses when the service you are working
with does not offer hypermedia response formats as an option?

Solution
When you’re working with services that don’t offer hypermedia-style responses and
you still want to be able to rely on clearly described links and forms on the client side,
you can code your client application to supply its own links and forms at runtime,
based on the original API documentation.

4.10 Supporting Links and Forms for Nonhypermedia Services | 135

Example
A hypermedia-based API client consumes the response, identifies the action items
(links and forms) in the message, and renders them (in the case of the human UI sol‐
ution) along with any data that is received. A high-level look at that kind of client
code would be:

// low-level HTTP stuff
function req(url, method, body) {
 var ajax = new XMLHttpRequest();
 ajax.onreadystatechange = function(){rsp(ajax)};
 ajax.open(method, url);
 ajax.setRequestHeader("accept",g.atype);
 if(body && body!==null) {
 ajax.setRequestHeader("content-type", g.ctype);
 }
 ajax.send(body);
}

function rsp(ajax) {
 if(ajax.readyState===4) {
 g.msg = JSON.parse(ajax.responseText);
 showTitle();
 showToplinks();
 showItems();
 showActions();
 }
}

When a response is received, the client looks through the message body and handles
all the key tasks. For example, here’s what the showTopLinks() method might look
like:

// emit links for all views
function showToplinks() {
 var act, actions;
 var elm, coll;
 var menu, a;

 elm = d.find("toplinks");
 d.clear(elm);
 menu = d.node("div");

 actions = g.actions[g.object]; // get the link metadata
 for(var act in actions) {
 link = actions[act]
 if(link.target==="app") {
 a = d.anchor({
 href:link.href,
 rel:(link.rel||"collection"),
 className:"action item",
 text:link.prompt

136 | Chapter 4: Hypermedia Clients

 });
 a.onclick = link.func;
 d.push(a, menu);
 }
 }
 d.push(menu,elm);
}

This example renders the top links on a user interface. The source of that rendering is
the link metadata. This client gets that in a single line of code. In hypermedia respon‐
ses, that link metadata is in the body of the message. But even if you only get simple
JSON data responses, you can use this same code. You just need to modify where the
link metadata comes from.

In the following example, the link metadata comes from an internal structure that
holds all the links and forms for a particular context (“users,” “tasks,” etc.). All the
metadata was gleaned from the APIs human-centric documentation. All the rules for
possible actions and arguments were translated from the API docs into this client-
code structure:

 // user object actions
 g.actions.user = {
 home: {target:"app", func:httpGet, href:"/home/", prompt:"Home"},
 tasks: {target:"app", func:httpGet, href:"/task/", prompt:"Tasks"},
 users: {target:"app", func:httpGet, href:"/user/", prompt:"Users"},
 byNick: {target:"list", func:jsonForm, href:"/user",
 prompt:"By Nickname", method:"GET",
 args:{
 nick: {value:"", prompt:"Nickname", required:true}
 }
 },
 byName: {target:"list", func:jsonForm, href:"/user",
 prompt:"By Name", method:"GET",
 args:{
 name: {value:"", prompt:"Name", required:true}
 }
 },
 add: {target:"list", func:jsonForm, href:"/user/",
 prompt:"Add User", method:"POST",
 args:{
 nick: {value:"", prompt:"Nickname", required:true,
 pattern:"[a-zA-Z0-9]+"},
 password: {value:"", prompt:"Password", required:true,
 pattern:"[a-zA-Z0-9!@#$%^&*-]+"},
 name: {value:"", prompt:"Full Name", required:true},
 }
 },
 item: {target:"item", func:httpGet, href:"/user/{id}", prompt:"Item"},
 edit: {target:"single", func:jsonForm, href:"/user/{id}",
 prompt:"Edit", method:"PUT",
 args:{

4.10 Supporting Links and Forms for Nonhypermedia Services | 137

 nick: {value:"{nick}", prompt:"Nickname", readOnly:true},
 name: {value:"{name}", prompt:"Full Name",required:true}
 }
 },
 changepw: {target:"single", func:jsonForm, href:"/task/pass/{id}",
 prompt:"Change Password", method:"POST",
 args:{
 nick: {value:"{nick}", prompt:"NickName", readOnly:true},
 oldPass: {value:"", prompt:"Old Password", required:true,
 pattern:"[a-zA-Z0-9!@#$%^&*-]+"},
 newPass: {value:"", prompt:"New Password", required:true,
 pattern:"[a-zA-Z0-9!@#$%^&*-]+"},
 checkPass: {value:"", prompt:"Confirm New", required:true,
 pattern:"[a-zA-Z0-9!@#$%^&*-]+"},
 }
 },
 assigned: {target:"single", func:httpGet, href:"/task/?assignedUser={id}",
 prompt:"Assigned Tasks"}
 };

Now you can use links and forms for services that don’t provide them at runtime.

Discussion
This recipe relies on someone doing the work of translating the rules buried in the
API documentation into a machine-readable form. That’s what hypermedia-
compliant services do. If the service doesn’t automatically do this work, client devel‐
opers can save a lot of time by doing it once and sharing the results. Consider placing
all link and form metadata for a service in a separate module or an external configu‐
ration file. Even better, if you can, convince your server teams to do this for you.

Some formats are designed specifically to make capturing and sharing link and form
metadata. One is the Web Service Transition Language (WSTL). You may also be able
to use JSON HyperSchema. Check out “Hypermedia Supporting Types” on page 423
for details.

There are some additional challenges not covered in the example, the biggest being
user-context management. It could be that admin users should see or do things that
guest users do not. In that case, a solid approach is to create a separate set of action
metadata for each security role your application supports.

Another challenge you’ll need to deal with is when the service changes but your local
metadata information does not keep up. This is another case of versioning problems
that come up when clients operate on static metadata at runtime. The good news is
that, when action rules change on the server, at least the client application only needs
to update configuration metadata and not the entire application codebase.

138 | Chapter 4: Hypermedia Clients

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 5.3, “Converting Internal Models to External Messages”
• Recipe 5.4, “Expressing Internal Functions as External Actions”

4.11 Validating Data Properties at Runtime
When supporting the collection of inputs for client applications, it can be a challenge
to properly describe valid input values at runtime. However, relying on predefined
input rules documented only in human-readable prose can limit the adaptability of
the client application and reduce its usefulness over time.

Problem
How can API clients consistently enforce the right data properties on input values at
runtime? Also, how can we make sure that changes in the input rules over time con‐
tinue to be honored by API clients and that these rule changes do not break already-
deployed API clients?

Solution
An effective approach for API clients to support data property validation at runtime
is to recognize and honor rich input descriptions (RIDs) within HTTP responses. A
great example of RIDs can be found in the HTML format. HTML relies upon the
INPUT element and a collection of attributes to describe expected inputs (INPUT.type)
and define valid values (INPUT.pattern, INPUT.required, INPUT.size, etc.).

Client applications should support any or all data property quality checks provided
by the incoming message format (HAL, SIREN, Collection+JSON, etc.).

Example
The HAL-FORMS specification is a good example of an API format that supports
RIDs. HAL-FORMS is an extension of the HAL media type designed specifically to
add RID support to the HAL format. The HAL-FORMS specification splits RIDs into
three key groups: Core, Additional, and a special category: Options.

The Core section lists the following elements that clients should support: readOnly,
regex, required, and templated. The Additional section lists elements that clients

4.11 Validating Data Properties at Runtime | 139

https://oreil.ly/kr2Mp
https://oreil.ly/clkaO
https://oreil.ly/ID2t7

may support: cols, max, maxLength, min, minLength, placeholder, rows, step, and
type. The Options support is a special class of input validation that implements
describing enumerators (e.g., small, medium, large, etc.).

Here is an example of a HAL-FORMS Options description:

{
 "_templates" : {
 "default" : {
 ...
 "properties" : [
 {
 "name" : "shipping",
 "type" : "radio",
 "prompt" : "Select Shipping Method",
 "options" : {
 "selectedValues" : ["FedEx"],
 "inline" : [
 {"prompt" : "Federal Express", "value" : "FedEx"},
 {"prompt" : "United Parcel Service", "value" : "UPS"},
 {"prompt" : "DHL Express", "value" : "DHL"}
]
 }
 }
]
 }
 }
}

Discussion
The SIREN format supports a wide range of RIDs. It does this by simply referring to
the HTML specification for input types.

The RID can often be used to determine the rendering of the input control (e.g., a
drop-down list, date-picker, etc.). This is common when the response message is con‐
sumed by an API client that is designed for human use, but can be ignored when the
client application is designed for M2M interactions.

At a minimum, supporting a regular expression property to describe valid inputs can
work in many cases and limits the implementation burden on the client application.
This is especially true for M2M interactions where there is no need for user interface
rendering hints.

If the service response does not include inline/runtime RIDs, client application devel‐
opers should review the human-readable documentation and implement the API
consumer to support the same kinds of RIDs described here. Usually that means cre‐
ating either an inline code implementation of RIDs or a configuration-based
approach. No matter the implementation details, it is a good idea to turn the human-

140 | Chapter 4: Hypermedia Clients

https://oreil.ly/GUNOr
https://oreil.ly/TOWGA

readable input validation rules into machine-readable algorithms. See Recipe 4.10 for
details on this strategy.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.8, “Every Important Element Within a Response Needs an Identifier”
• Recipe 4.10, “Supporting Links and Forms for Nonhypermedia Services”
• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 4.13, “Using Document Queries to Validate Incoming Messages”
• Recipe 4.14, “Validating Incoming Data”
• Recipe 6.8, “Ignoring Unknown Data Fields”

4.12 Using Document Schemas to Validate
Outgoing Messages
It is important for client applications to do their very best to send valid messages
(especially message bodies) to servers. One way to ensure you are sending valid mes‐
sage bodies is to validate those bodies with a schema document. But is it always a
good idea to use schema validations when sending request bodies?

Problem
How can a client application make sure it is sending a well-formed and valid request
body when invoking service requests?

Solution
Sending well-formed and valid request bodies with HTTP methods like POST, PUT,
and PATCH is important. To reduce the chance your request is rejected, you should
validate the structure and content of your request bodies before sending them to the
service for processing. Essentially, it is the responsibility of the client application to
properly craft a valid request body, and it is the role of the service to do its best to
process all valid requests. This is the embodiment of Postel’s Law (aka the robustness
principle).

A very effective way to meet this requirement is to use schema documents to confirm
the validity of your message body. Both JSON and XML have strong schema specifi‐
cations, and there is a wide array of tooling to support them.

4.12 Using Document Schemas to Validate Outgoing Messages | 141

https://oreil.ly/ctpPl
https://oreil.ly/ctpPl

There are two levels of confirmation that clients need to handle: is the document
well-formed, and is the document valid? Well-formed documents have the proper
structure. This means they can be successfully parsed. Valid documents are not only
well-formed, but both the structural elements (e.g., street_name, purchase_price)
and the values of the those elements are of the right data type and within acceptable
value ranges (e.g., purchase_price is a numerical value greater than zero and less
than one thousand).

For any cases where client applications are expected to send request message bodies,
those clients should perform some type of validation before committing the request
to the internet. If the body format is in JSON or XML format, using schema docu‐
ments and validator libraries is the way to go. For other formats (application/x-
www-form-urencoded, etc.), client applications should rely on their own local valida‐
tion routines to confirm the message body is well-formed and valid.

Example
Here’s an example of a simple message body described in FORMS+JSON format:

{
 id: "filter",
 name: "filter",
 href: "http://company-atk.herokuapp.com/filter/",
 rel: "collection company filter",
 title: "Search",
 method: "GET",
 properties: [
 {name: "status",value: ""},
 {name: "companyName",value: ""},
 {name: "stateProvince",value: ""},
 {name: "country",value: ""}
]
}

And here’s a basic JSON Schema document that can be used to validate the message
body:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "status": {
 "type": "string",
 "enum": ["pending","active","closed"]
 },
 "companyName": {
 "type": "string"
 },
 "stateProvince": {
 "type": "string"

142 | Chapter 4: Hypermedia Clients

 },
 "country": {
 "type": "string"
 }
 }
}

The topic of JSON Schema is too large for this book to cover. To
dig more into this topic, I recommend you check out https://json-
schema.org.

Here is a possible body a client might send:

{
 "status":"pending",
 "country":"CA"
}

Finally, here’s an example using a popular JSON validator (ajv) that I frequently use:

/*
 * load the schema file from external source
 * pass in the JSON message to send
 * process and return results/errors
 */

function jsonMessageCheck(schema, message) {
 var schemaCheck = ajv.compile(schema);
 var status = schemaCheck(message);
 return {status:status,errors:schemaCheck.errors};
}

Validating XML messages with XML Schema
There are similar options for handling XML validations, too, via XML Schema docu‐
ments and tooling. There are a handful of approaches, depending on your platform.

Using the same example, here’s the XML Schema for filtering company records:

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="message">
 <xs:complexType>
 <xs:all>
 <xs:element name="status" type="xs:string"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="companyName" type="xs:string"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="stateProvince" type="xs:string"
 minOccurs="0" maxOccurs="1"/>

4.12 Using Document Schemas to Validate Outgoing Messages | 143

https://json-schema.org
https://json-schema.org
https://oreil.ly/FlNg1

 <xs:element name="country" type="xs:string"
 minOccurs="0" maxOccurs="1"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

For more on the world of XML and XSD, check out XML Schema
and XML Schema 1.1.

And here’s a sample XML message:

<message>
 <status>pending</status>
 <country>CA</country>
</message>

And then here’s a simple example of runtime validation in client code:

var xsd = require('libxmljs2-xsd');

function xmlMessageCheck(schema, message) {
 var schemaCheck;
 var errors;
 var status = false;

 try {
 schemaCheck = xsd.parseFile(schema);
 status = true;
 } catch {
 status = false;
 errors = schemaCheck.validate(message);
 }
 return {status:status,errors:errors}
}

This sample relies on a node module based on the Linux xmllib library.

Validating FORMS with JSON Schema

Validating application/x-www-form-urlencoded message bodies takes a bit more
work, but as long as the message bodies are simple, you can convert the applica
tion/x-www-form-urlencoded messages into JSON and then apply a JSON Schema
document against the results:

const qs = require('querystring');

/*
 * read JSON schema doc from external source

144 | Chapter 4: Hypermedia Clients

https://www.w3.org/TR/xmlschema
https://www.w3.org/TR/xmlschema11-1
https://oreil.ly/MqnEO

 * send in form-urlencoded string
 * convert data into JSON and forward to json checker
 * return results from json checker
 */
function formJSONValidator(schema, formData) {
 var jsonData = qs.parse(formData);
 var results = jsonMessageCheck(schema, jsonData);
 return results // {status:status,schema.errors}
}

Notice that this routine depends on the jsonMessageCheck method seen earlier in
this section.

Discussion
Services should make all required schemas available online and link to them in every
interaction that relies on validated messages. This means that client applications
should look for schema references in services responses. Common locations are
shown here.

In the HTTP link header:

**** REQUEST
GET /api.example.org/users/search HTTP/1.1
Accept: application/forms+json;

*** RESPONSE
200 OK HTTP/1.1
Content-Type: application/forms+json;
Link: <schemas.example.org/service1/user-schema.json>; profile=schema

{...}

As part of the response body:

{
 "id" : "za1xs2cd3",
 "type": "search",
 "schema" : "api.example.org/schemas/user-search.json",
 "links" : [
 {
 "id" : "q1w2e3r4"
 "name" : "user",
 "href" : "http://api.example.org/q1w2e3r4",
 "title" : "User Search",
 "method" : "GET",
 "properties": [
 {"name":"familyName", "value":""},
 {"name":"givenName", "value":""},
 {"name":"sms", "value":""},
]
 }

4.12 Using Document Schemas to Validate Outgoing Messages | 145

],
 ...
}

Validating message bodies using JSON/XML Schema can be tricky. For example,
JSON Schema is much more forgiving than XML Schema. While there are some tools
that support converting XML Schema to JSON Schema at runtime, it rarely works out
well. It is best to continue to write schemas in their native format.

The trick of converting application/x-www-form-urlencoded to JSON works well as
long as the resulting JSON is treated as simple name/value pairs. Most FORMs-
formatted messages follow this pattern, but there are cases where services get creative
with FORM field names that imply a nested hierarchy. For example:

user.familyName=mamund&user.givenName=ramund&user.sms=+12345678901

implies a server-side message that looks like this:

{
 "user" : {
 "familyName" :"mamund",
 "givenName" :"ramund",
 "sms" : "+12345678901"
 }
}

As the service get more clever with naming patterns, the suggested trick of converting
FORM strings to JSON documents gets less reliable. To avoid the problem, it may be
better to write a code-based validator instead.

In the best case, services will supply client application developers with properly writ‐
ten (and up-to-date) schema documents to use at runtime. If the target service does
not do this, application developers should review the human-readable documentation
for the service API and craft their own schema documents for use at runtime. These
documents should be posted somewhere online (possibly behind a secured URL) that
is reachable by client applications. Care must also be taken to keep these schema
documents up-to-date as the service changes over time.

When in doubt, write your own custom message checking code
directly to avoid any problems with poorly written or inadequately
maintained schema documents.

Well-crafted services will make sure that any schema changes to production services
will remain backward compatible with previous editions of the service. However, cli‐
ent applications should be prepared for services that do not follow this principle. If
the target service is particularly bad at maintaining backward compatibility, client

146 | Chapter 4: Hypermedia Clients

applications may need to abandon runtime validation based on schema documents
and instead write code-based validators to ensure compatibility going forward.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 4.13, “Using Document Queries to Validate Incoming Messages”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

4.13 Using Document Queries to Validate
Incoming Messages
When API client applications receive a response from a service, it is important that
they validate the incoming data to make sure the response contains the expected data
in the requested format. This is especially true for M2M interactions where the
human agent rarely gets a chance to view and validate incoming messages.

Problem
How can an API client application consistently and safely confirm that the incoming
service response contains the expected data in the requested format?

Solution
API client applications should inspect incoming service responses on three levels:

Protocol
Does the response include the expected HTTP protocol-level details (HTTP sta‐
tus code, content-type, and any other important headers)?

Structure
Is the response body (if it exists) made up of the expected structural elements?
For example, is there an expected title property? Does the body contain one or
more link elements with the expected rel, name, or other properties, and so
forth?

Value
Assuming the expected structural elements exist (e.g., links, forms, data proper‐
ties), do those elements contain the expected values (e.g., rel="self")? In the
case of data properties, do the elements contain the expected data types (string,
integer, etc.), and are the values of the data properties within acceptable ranges?

4.13 Using Document Queries to Validate Incoming Messages | 147

For example, do Date type properties contain valid calendar dates? Are numerical
values within acceptable upper and lower bounds?

For details on how to use schema documents to validate outgoing
messages, see Recipe 4.12.

Example
Here is a simplified version of validating the incoming message for protocol, struc‐
ture, and values:

var response = httpRequest(url, options);
var checks = {};
var message = {};

// protocol-level checks
checks.statusOK = (response.statusCode===200?true:false)
checks.contentTypeCollectionJSON = (
 response.headers["content-type"].toLowercase().indexOf("vnd.collection+json")
 ?true:false
);
checks.semanticTypeTaxes = (
 response.headers["profile-type"].toLowercase().indexOf("taxes.v1.alps")
 ?true:false
);

// structural checks
checks.body = JSON.parse(response.body);
checks.submitLink = (body.filter("submit").length>0?true:false);
checks.rejectLink = (body.filter("reject").length>0?true:false);
checks.countryCode = (body.filter("countryCode").length>0?true:false);
checks.stateProvince = (body.filter("stateProvince").length>0?true:false);
checks.salesTotal = (body.filter("salesTotal").length>0?true:false);

// value checks
checks.submit = checkProperties(submitLink, ["href","method","encoding"]);
checks.reject = checkProperties(rejectLink, ["href","method","encoding"]);
checks.country = checkProperties(countryCode, ["value"],filters.taxRules);
checks.stateProv = checkProperties(stateProvince, ["value"],filters.taxRules);
checks.salesTotal = checkProperties(salesTotal, ["value"],filters.taxRules);

// do computation
if(validMessage(checks) {
 var taxes = computeTaxes(checks);
 checks.taxes = checkProperties(taxes,filters.taxRules);
}

// send results

148 | Chapter 4: Hypermedia Clients

if(validMessage(checks) {
 message = formBody(checks.submit, checks.taxes);
}
else {
 message = formBody(checks.reject,checks.taxes);
}
response = httpRequest(taxMessage);

You can also see that, after all the checks are made (and assuming they all pass), the
code performs the expected task (computing taxes) and submits the results. It is easy
to see from this example that most of the coding effort is in safely validating the
incoming message before doing a small bit of work. This is a feature of well-built API
client applications, especially in M2M cases.

Discussion
Although the example is verbose, it should be noted that much of this code can be
generated instead of handcoded. This can greatly reduce the effort needed to com‐
pose a well-formed API client, and improve the safety and consistency of the applica‐
tion at runtime.

Do not rely on schemas
You may be surprised to see that I am not suggesting the use of schema documents
(JSON Schema, XML Schema, etc.) for validating incoming messages. In my experi‐
ence, applying schemas (particularly strict schemas) to incoming messages results in
too many false negatives—rejections of messages that fail the schema but could still
be successfully and safely processed by the client. This is especially true in the case of
XML Schema, which is strict by default. Even valid items in a different order in the
document can result in a failed schema review. Schemas also don’t cover the protocol-
level checks that are needed.

Consider using JSON/XML path queries
The example relies on some features of JavaScript to perform filtering checks. These
lines of code can be replaced by a more generic solution using JSON Path queries. I
use a JavaScript/NodeJS library called JSON Path-Plus for this task. However, caution
is advised here since, as of this writing, the JSONPath specification at IETF is still
incomplete and will likely change significantly.

The XML Path specification, however, is quite mature and a very reliable source for
checking XML-formatted messages. There is even ongoing work at the W3C to
expand the scope of XML Path version 3.1 to include support for JSON queries.

See more on filtering incoming messages in Recipe 4.14.

4.13 Using Document Queries to Validate Incoming Messages | 149

https://oreil.ly/y3dli
https://oreil.ly/vL1yy
https://oreil.ly/UbIwj
https://oreil.ly/uKBDe

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

4.14 Validating Incoming Data
When creating API clients it is important to know how to deal with incoming mes‐
sages. Essentially, every service response should be assumed to be dangerous until
proven otherwise. The message may contain malicious data, smuggled scripts for exe‐
cution, and/or just plain bad data that might cause the client application to
misbehave.

Having a strategy for safely dealing with incoming payloads is essential to building a
successful API ecosystem. This is especially true in ecosystems where M2M commu‐
nication exists, since humans will have reduced opportunities to inspect and correct
or reject questionable content.

Problem
How can client applications make sure the incoming message does not contain
dangerous or malicious content?

Solution
API client applications should carefully inspect incoming messages (service respon‐
ses) and remove or ignore any dangerous content. This can be done by relying on a
few basic principles when coding the client application:

• Always filter incoming data.
• Rely on the “allow list” model instead of “deny list” for approving content.
• Maintain a “min/max” for all data values and reject any data outside that range.

These general rules are supported by another line of defense for client applications:
syntactic validation (based on the expected data type) and semantic validation (based
on the expected value of that data type). Examples of syntactic validation are complex
types such as postal codes, telephone numbers, personal identity numbers (US Social
Security numbers, etc.) and other similar predefined types. Your client application
should be able to identify when these types of data are expected to appear and know

150 | Chapter 4: Hypermedia Clients

how to validate the structure of these data types. For example, US postal codes are
made up of two sets of digits: first a required five digits and then—optionally—a dash
and four more digits. Well-designed message formats provide this kind of data type
information in the response at runtime.

The basic premise that API clients should adopt is “defend yourself
at all costs—including to the point of refusing to process the
request altogether.” This flies a bit in the face of Postel’s Law (aka
the robustness principle), but for a good reason. API clients should
only pay attention to content values they already understand,
should make sure the values are reasonable, and only perform pre‐
determined operations on those fields.

Client applications should also do their best to validate the semantic value of the mes‐
sage content. For example, if a date range is provided—for example: startDate and
stopDate—it is important to validate that the value for startDate is earlier than the
value supplied for stopDate.

Example
Collection+JSON is an example of this kind of support for syntactic type information:

{"collection" :
 {
 ...
 "items" : [
 {
 "rel" : "item person"
 "href" : "http://example.org/friends/jdoe",
 "data" : [
 {"name" : "full-name", "value" : "J. Doe",
 "prompt" : "Full Name", "type" : "string"},
 {"name" : "email", "value" : "jdoe@example.org",
 "prompt" : "Email", "type" : "email"},
 {"name" : "phone", "value" : "123-456-7890",
 "prompt" : "Telephone", "type" : "telephone"}
 {"name" : "birthdate", "value" : "1990-09-30",
 "prompt" : "Birthdate", "type" : "date"}
]
 }
]
 ...
 }
}

4.14 Validating Incoming Data | 151

Discussion
Not many representation formats automatically include data type and range metadata
for content values. Where possible, try to convince the services your client applica‐
tion uses to add this information as runtime metadata. Formats that do a pretty good
job at this are JSON-LD, UBER, Collection+JSON, and any of the RDF formats.

For cases where the type/range metadata is not available at runtime, client developers
should scan the existing human-readable documentation and create their own con‐
tent metadata to apply to incoming messages. While this external source might fall
out of sync over time (when the human-readable documents are updated), having a
machine-readable set of content filtering rules is still quite valuable.

Here is an example of possible type and range metadata for a client that computes
sales and VAT taxes:

var filters = {}
filters.taxRules = {
 country:{"type":"enum","value":["CA","GL","US"}],
 stateProvince:{"type":"enum","value":[...]},
 salesTotal:{"type":"range","value":{"min":"0","max":"1000000"}
}

When receiving a response message, it is a good practice to create an internal, filtered
representation of that message and only allow your own code to operate on the fil‐
tered representation—not the original. This reduces the chances that your application
will mistakenly ingest improperly formed data and limits the possible risk to your
application.

// make request, pull body, and scrub
var reponse = httpRequest(url, options);
var message = filterResponse(response.body, filters.taxRules);

In this example, the message variable contains content deemed safe for the applica‐
tion to use. Note that the filterResponse() routine can perform a number of opera‐
tions. First, it should only look for content that is interesting for this client applica‐
tion. For example, if this client computes sales or value-added taxes, it might only
need to pay attention to the fields country, stateProvince, and salesTotal. This fil‐
ter may only return those fields while making sure the values in them are “safe.” For
example, the country field contains one of a list of valid ISO country codes, etc. The
results can be used to format another message to use in future requests.

Note that in this example, additional semantic validation is needed to make sure that
both the country and stateProvince values are compatible. For example, coun
try="CA" and stateProvince="KY" would be semantically invalid.

Finally, there may be cases where an API client has the job of accepting a working
document, performing some processing on that document, updating it, and sending

152 | Chapter 4: Hypermedia Clients

the document along to another application or service. In these instances, it is still a
good idea to filter the content of the document down to just the fields your API client
needs to deal with, validate those values, perform the operation, and then update the
original document with the results before passing it along. Your API client is not in
charge of scrubbing the whole document that is to be passed along, however. Your
only responsibility is to pull the fields, clean them, do the work, and then update the
original document. You should assume that any other applications that work on this
document are doing the same level of self-protection.

Here is a simplified example:

function processTaxes(args) {
 var results = {};
 var response = httpRequest(args.readUrl, args.readOptions);
 var message = filterResponse(response.body,args.rules);

 if(message.status!=="error") {
 results = computeTaxes(message);
 } else {
 results = invalidMessage(message)
 }

 options.requestBody = updateBody(response.body, message);
 response = httpRequest(args.writeUrl, args.writeOptions);
}

For more on scrubbing incoming data, check out the OWASP Input Validation Cheat
Sheet.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 4.13, “Using Document Queries to Validate Incoming Messages”
• Recipe 6.7, “Using Media Types for Data Queries”

4.15 Maintaining Your Own State
In a RESTful system, it can be a challenge to locate and access the transient state of
requests and responses. There are only three possible places for this kind of informa‐
tion: server, client, and messages passed between server and client. Which option is
best under what circumstances?

4.15 Maintaining Your Own State | 153

https://oreil.ly/haoIb
https://oreil.ly/haoIb

Problem
How can a client successfully track the transient state of server and client interac‐
tions? Where does the application state reside when a single client application is talk‐
ing to multiple server-side components?

Solution
The safest place to keep the transient state—the state of the application as defined by
runtime requests and responses—is in the client. The client is responsible for select‐
ing which servers are engaged in interactions, and the client is initiating HTTP
requests. It is the client, and only the client, that has the most accurate picture of the
state of the application. This is especially true when the client has enlisted multiple
services (services unrelated to each other) to accomplish a task or goal.

The easiest way to do this is for the client application to keep a detailed history of
each request/response interaction and select (or compute) important application state
data from that history. Most programming tools support serializing HTTP streams.

Typically, the following elements should be captured and stored by the client:

Request elements
• URL
• Method
• Headers
• Query string
• Request body

Response elements
• URL
• Status
• Content-type
• Headers
• Body

Note that the URL value from the request might not be the same as the URL of the
response. This might be due to an incomplete request URL (e.g., missing the protocol
element: api.example.org/users) or as a result of server-side redirection.

Example
The following is a snippet of code from the HyperCLI client application that manages
the request and response elements of HTTP interactions:

154 | Chapter 4: Hypermedia Clients

 ...
 // collect request info for later
 requestInfo = {};
 requestInfo.url = url;
 requestInfo.method = method;
 requestInfo.query = query;
 requestInfo.headers = headers;
 requestInfo.body = body;

 // make the actual call
 if(body && method.toUpperCase()!=="GET") {
 if(method.toUpperCase()==="DELETE") {
 response = request(method, url, {headers:headers});
 }
 else {
 response = request(method, url, {headers:headers, body:body});
 }
 } else {
 if(body) {
 url = url + querystring.stringify(body);
 }
 response = request(method, url, {headers:headers});
 }
 response.requestInfo = requestInfo;
 responses.push(response);
 ...

This code creates a push-down stack that holds information on each HTTP interac‐
tion. The same client application can now recall the history of interactions and use
the request and response details to make decisions on how to proceed.

Here is the SHOW HELP output for the DISPLAY command that returns details on the
available HTTP interaction history:

DISPLAY|SHOW (synonyms)
 REQUEST (returns request details - URL, Headers, querystring, method, body)
 URL (returns the URL of the current response)
 STATUS|STATUS-CODE (returns the HTTP status code of the current response)
 CONTENT-TYPE (returns the content-type of the current response)
 HEADERS (returns the HTTP headers of the current response)
 PEEK (displays the most recent response on the top of the stack)
 POP (pops off [removes] the top item on the response stack)
 LENGTH|LEN (returns the count of the responses on the response stack)
 CLEAR|FLUSH (clears the response stack)
 PATH <jsonpath-string|$#> (applies the JSON Path query to current response)

For more on HyperLANG and the HyperCLI, see Appendix D.

4.15 Maintaining Your Own State | 155

Discussion
Keeping track of HTTP requests and responses takes a bit of work to set up but
results in a very powerful feature for client applications. To lower the cost of support‐
ing this functionality, it can be helpful to create a reusable library that just handles the
request/response stack and share that in all client-side HTTP applications.

Just tracking the interactions on the stack is usually not enough functionality for cli‐
ents. You’ll also need to monitor selected values and keep track of them as “state vari‐
ables.” You can see from the previous example that the suggested functionality
includes the use of JSON Path as a way to inspect and select properties from within a
single request/response pair. You can use something like this to monitor important
state values, too. See Recipe 4.16 for more on tracking important client-side variables.

If you are working with a client application that does not manage its own file space
(e.g., a web browser), you can set up an external service that will track the HTTP
interactions and serve them up remotely (via HTTP!). This offers the same function‐
ality but relies on a live HTTP connection between the client and the interaction ser‐
vice. That means the service might be a bit slower than a native file-based system and
the service might be unavailable due to network problems between the client and the
interaction service.

See Also
• Recipe 4.14, “Validating Incoming Data”
• Recipe 4.16, “Having a Goal in Mind”
• Recipe 6.8, “Ignoring Unknown Data Fields”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

4.16 Having a Goal in Mind
There are times when the client application needs to continue running (making
requests, performing work, sending updates, etc.) until a certain goal is reached (a
queue is empty, the total has reached the proper level, etc.). This is especially true for
client apps that have some level of autonomy or automated processing. There are
some challenges to this, including cases where the client knows the goal but the ser‐
vice(s) being used by that client do not.

Problem
How do you program a client application to continue processing until some goal is
reached? Also, what does it take to create client applications that have a goal that is
“private” and not shared or understood by any services?

156 | Chapter 4: Hypermedia Clients

Solution
To build client applications that can continue operations until a goal is reached, you
need to program some level of autonomy for that client. The application needs to
know what property (or properties) to monitor, know the target value(s) for the
selected properties, be able to locate and monitor the values over time, and know
when an end has been reached and how to effect a stop in processing.

Programming this solution is essentially the work of most gaming engines or autono‐
mous robot systems. Client applications can follow the classic artificial intelligence
PAGE model:

Percepts
The properties that need to be monitored.

Actions
The tasks clients can commit to affect the values of the properties (read, write,
compute).

Goals
The desired end values.

Environment
The playing field or game space in which the client operates. In our case, this
would be the services with which the client interacts in order to see and affect the
Percepts on the way to achieving the Goals.

Example
There are a couple of different types of goal models you are likely to need: a defined
exit goal (DEG) and a defined state goal (DSG). Each takes a slightly different pro‐
gramming construct.

Defined exit goal
With DEGs, you write a program that halts or exits some process once the defined
goal is reached. The following example was taken from an autonomous hypermedia
client that navigates its way out of an undetermined maze:

function processLinks(response,headers)
{
 var xml,linkItem,i,rel,url,href,flg,links,rules;

 flg = false;
 links = [];
 rules = [];

 // get all the links in this document
 g.linkCollection = [];

4.16 Having a Goal in Mind | 157

https://oreil.ly/5rwjg

 xml = response.selectNodes('//link');
 for(i=0;i<xml.length;i++)
 {
 rel = xml[i].getAttribute('rel');
 url = xml[i].getAttribute('href');
 linkItem = {'rel':rel,'href':url};
 g.linkCollection[g.linkCollection.length] = linkItem;
 }

 // is there an exit?
 href = getLinkElement('exit');
 if(href!='')
 {
 printLine('*** Done! '+href);
 g.done = true;
 return;
 }

 // is there an entrance?
 if(flg==false && g.start==false)
 {
 href = getLinkElement('start');
 if(href!='')
 {
 flg=true;
 g.start=true;
 g.href = href;
 g.facing = 'north';
 printLine(href);
 }
 }

 // ok, let's go through a door
 rules = g.rules[g.facing];
 for(i=0;i<rules.length;i++)
 {
 if(flg==false)
 {
 href=getLinkElement(rules[i]);
 if(href!='')
 {
 flg=true;
 g.facing=rules[i];
 printLine(href);
 continue;
 }
 }
 }

 // update pointer, handle next move
 if(href!='')
 {

158 | Chapter 4: Hypermedia Clients

 g.href = href;
 nextMove();
 }
}

Note that the client application has a goal of “finding the exit” and continues to move
from room to room until that goal is reached.

Defined state goal
There are cases when you need to program a client application to maintain a desired
state—a DSG. For example, you need a client app to monitor the temperature of a
room and activate heating/cooling units to maintain that state. Here is a snippet of
code designed to do that:

// set control values
var roomURL = "http://api.example.org/rooms/13";
var min = 18;
var max = 22;
var wait = (15*60*1000);

// set up periodic checks
setInterval(checkTemp(roomURL,min,max),wait));

// do the check
function checkTemp(roomURL, minTemp, maxTemp) {
 var rtn, temp;

 rtn = "";
 response = httpRequest(roomURL);
 printLine(req)

 if(response.temp<minTemp) {
 rtn = response.form("heat");
 }
 if(response.temp>maxTemp) {
 rtn = response.form("cool");
 }

 if(rtn!=="") {
 response = httpRequest(rtn);
 printLine();
 }
}

In the simple DSG, the application is tasked to maintain a room temperature between
18ºC and 22ºC. The temperature is monitored every 15 minutes and, if needed, adjus‐
ted accordingly. Of course the service used by this client doesn’t know what the client
has in mind, it just responds with the information about the requested room when
asked. You can see in this example that the response from the service includes data on
the temperature (req.temp) as well as hypermedia controls to modify the state of the

4.16 Having a Goal in Mind | 159

temperature (req.form("heat") and req.form("cool")). It is worth pointing out
that the monitoring service (http://api.example.org/rooms) might not know any‐
thing about how to adjust the room temperature—that might be handled by separate
services, too.

Discussion
Coding goal-oriented clients (DEGs and DSGs) assumes a few key things. First, that
the client “knows” the end goal ahead of time. Second, that the client already knows
how to achieve this goal (finding the exit, adjusting the temp, etc.). Third, the client
can find an accurate representation of the current state, and fourth, is able to properly
evaluate the current state against the desired goal. All of these elements must be
present for the goal-oriented client to be successful.

For this recipe, the client examples (DEG and DSG) assume that all
the planning and criteria for evaluation are determined ahead of
time and/or supplied when the client starts (via a config file). No
machine learning or planning skills are built into the client applica‐
tion here.

In the DSG temperature example, the client knows that the end goal is a room temp
between 18ºC and 22ºC. It also knows it can use the “heat” and “cool” forms in an
HTTP response to achieve the goal. The client also knows that it can use the room
URL to check on the current temperature, and knows how to evaluate the returned
temp to its own internal minimum and maximum values.

Sometimes the evaluation step is more involved. For example, in the temperature
management case, maybe the temperature settings are different at different times of
the day, or if there are (or are not) people in the room, or based on the current cost
per kilowatt per hour, etc. In these cases, there may be more values to monitor and
use in a more involved comparison routine before taking the determined action.

It might also be the case that the evaluation is handled by another service (not the
client). For example, a stock buy/sell decision might come from a service that accepts
a wide range of inputs (which your client may supply), then returns an action recom‐
mendation that the client application then executes.

Whenever possible, it is a good idea to make both the properties to monitor and the
local evaluation values a configurable set of data points. This avoids hardcoding
decision-making data into the client application itself. You could, for example, pro‐
vide the client with the control data via a configuration file or even a remote HTTP
call to another service that holds configuration data.

Finally, it is important to add an escape option for goal-oriented client applications.
For example, if the DEG can’t find an exit to the maze, it will probably need to give up

160 | Chapter 4: Hypermedia Clients

after some point or be forever trapped in a loop. This escape value should be com‐
pletely controlled by the client, too. Depending on some other service for the decision
to escape could fail if the remote service is unavailable or sending bad data to the
client.

The same is true for DSG-style client applications. In our temperature monitor exam‐
ple, imagine that the service that returns the sensor data is broken or unavailable.
What does the client do? Does it just keep checking in vain? A better option is to add
some code that triggers an alert when the sensors are not responding or if they report
data far outside the assumed boundaries.

See Also
• Recipe 4.14, “Validating Incoming Data”
• Recipe 5.3, “Converting Internal Models to External Messages”
• Recipe 6.8, “Ignoring Unknown Data Fields”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

4.16 Having a Goal in Mind | 161

CHAPTER 5

Hypermedia Services

The best software architecture “knows” what changes often and makes that easy.
—Paul Clements, Software Architecture
in Practice (Pearson)

A primary challenge in designing and implementing APIs for services is balancing
usability with evolvability. It is important for service APIs to be clear and easy to
understand. At the same time it is critical that these same interfaces be defined in a
way that allows for future modifications. Finally, the value of service APIs is often tied
to their reliability over time. It’s fine to be able define an API that solves an immediate
problem. But as that problem varies over time, operating parameters change, and
needs and goals drift over time, that API—ideally—should continue to be useful.
That’s a lot to ask of a service interface design!

Check out “Promoting Stability and Modifiability with
Hypermedia Services” on page 33 for additional discussion on the
foundations of creating service interfaces.

As the chapter’s opening quote implies, knowing what changes often in a software
design and making that easy is a worthy goal. This is especially true for service APIs.
The API is the contract—the promise that needs to be kept.

A great example of this can be found in the way the HTTP protocol was designed.
Almost every key aspect of HTTP is modifiable. HTTP methods, status codes, URLs,
the list of possible headers, and the list of possible body formats are all abstract collec‐
tions that can be amended over time. The structure of HTTP messages is consistent—
that’s the promise. However the content of HTTP messages is variable—even, in some
cases, the content of the action control information (e.g., HTTP methods, URLs,

163

available message formats, etc.). This is the key to creating stable, valuable APIs for
services, and that’s what we’ll be talking about in this chapter.

Since this book is focused on interfaces, we will not spend time in
this chapter talking about the internal details of the services behind
the interfaces. However, it is important to have a solid understand‐
ing of the inner workings of scalable, robust, and reliable services
on the web. See Appendix B for some recommended material on
designing and building services.

The recipes in this section of the book are all focused on making it easy to design and
implement APIs that strike the right balance between specificity and evolvability. A
key feature of this type of API is the ability to include operational metadata at run‐
time instead of relying solely on design and build-time descriptions. In our case, this
ability to modify the messages at runtime will be driven using hypermedia formats
that follow the same general design pattern of the HTTP protocol itself: a clear mes‐
sage structure to support variable contents.

When creating service APIs, you need to balance the exposure and reliance on run‐
time and design-time metadata (see Figure 5-1). Another key element in successful
service interface implementation is the ability to support multiple representation for‐
mats via content negotiation.

Figure 5-1. Hypermedia services recipes

164 | Chapter 5: Hypermedia Services

5.1 Publishing at Least One Stable URL
When services publish an interface on the network, these services need to be easily
(and consistently) reached by API consumers. That means publishing your API at a
stable location (using a URL). But does that mean you can never change the pub‐
lished location? And, if you can change it, how do you tell API consumers about this
change?

Problem
How can you establish a stable network location (URL) for your service API, and
what steps are needed to make sure your API is findable even if the underlying ser‐
vice has moved to a new location?

Solution
Service interfaces should promise at least one stable URL that API consumers can use
to locate and interact with the service behind that API. The exact URL does not mat‐
ter. This should be the “starting point” of the API. It may be a resource that returns
details about the API (including the entry point). It may be the initial listing or state
of the service (e.g., the default list of users, etc.). Or it may be some other response
that API consumers can rely upon to initiate access with the service (e.g., a login, a
way to establish a stateful session, etc.).

The value of the URL could be something as simple as http://api.example.com/home
or as complicated as http://v1.home.api.example.org/q1w2e3r4t5. What matters is that
there is at least one location that consumers can memorize (i.e., write into their
source code or configuration files) that will ensure that the API consumer can con‐
nect with the service API. Finally, there is no requirement that a service API have only
one published stable URL. However, your API should have at least one URL that API
consumers can count on over time.

Stable URLs should be published in the API human-readable documentation. They
may also appear as a Link header in HTTP or as a link element in an API response
body that supports inline link elements.

In some cases, it might be wise to register a “well-known” URL for
your service API. However, this is not a trivial effort. See RFC 8615
and RFC 7595 for details.

Publishing a stable URL does not mean the service behind that URL cannot move. If
the service moves, requests to the stable URL can be redirected to the new location
using the HTTP status code 301 Moved Permanently.

5.1 Publishing at Least One Stable URL | 165

http://api.example.com/home
http://v1.home.api.example.org/q1w2e3r4t5
https://oreil.ly/tMGnn
https://oreil.ly/Rni9a
https://oreil.ly/8mhMG

Example
When indicating your API’s stable URL in human-readable documentation, be sure
to call it out as your API’s promise that the URL will be honored into the future and, if
needed, will redirect API client applications to the new service location.

You can use the Link header in an HTTP response to emit a stable URL for your API:

**** REQUEST
GET / HTTP/1.1
Host: api.example.org

**** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
ETag: "p0o9i8u7y6t5r4e3w2q1"
Link: <http://api.example.org/home>; rel="home"
...

The stable URL may also appear in the body of any (or all) responses that support
inline links. Here is an example shown in a Collection+JSON response:

{ "collection" :
 {
 "version" : "1.0",
 "href" : "http://api.example.org/friends/",

 "links" : [
 {"rel" : "home", "href" : "http://api.example.org/home"}
],

 "items" : [...],
 "queries" : [...],
 "template" : [...]
 }
}

When the service location moves, the API should continue to honor the originally
published stable URL and automatically redirect the API consumer to the new loca‐
tion URL:

**** REQUEST
GET / HTTP/1.1
Host: api.example.org

**** RESPONSE
HTTP/1.1 301 Moved Permanently
Location: http://new.example.org/home

**** REQUEST
GET /home HTTP/1.1
Host: new.example.org

166 | Chapter 5: Hypermedia Services

**** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
ETag: "p0o9i8u7y6t5r4e3w2q1"
Link: <http://api.example.org/home>; rel="home"
...

Discussion
Services interfaces should support at least one stable URL. Any stable URL is a
promise to API consumers that should last the test of time. It is certainly possible to
commit to promising more than one stable URL, but that just adds to the level of
work API designers need to do to keep the long-term promises of all the stable URLs.

Keep in mind that client applications can “memorize” as many URLs as they wish in
order to create an efficient API experience with a service. Just because the service
only promises one URL doesn’t mean the client application can’t learn and remember
other URLs in that API.

Services should not assume (or require) that all clients start their interactions by first
visiting the stable URL. No matter the number of stable URLs promised by the API,
clients are free to interact with the interface in any way they wish as long as it is mak‐
ing valid requests.

I typically use the link relation value "home" to indicate a stable URL for a service
API. You can use any value you wish as long as you document it well and use the
identifier consistently.

It is a good idea to emit the stable URL as a Link header in all your API responses. It
may also make sense to emit it as part of the response body whenever possible (e.g.,
you won’t be able to emit it for PNG or MP3 bodies!).

See Also
• Recipe 4.1, “Limiting the Use of Hardcoded URLs”
• Recipe 4.8, “Every Important Element Within a Response Needs an Identifier”
• Recipe 5.13, “Improving Service Discoverability with a Runtime Service Registry”

5.2 Preventing Internal Model Leaks
A common way in which service interfaces “break” is through changes in the under‐
lying data, object, or process models within the service code. It’s important to prevent
these internal elements from “leaking” out into the external API.

5.2 Preventing Internal Model Leaks | 167

https://oreil.ly/N1x4S

Problem
How can you reduce the possibility that a service’s internal data, object, and/or pro‐
cess model is directly exposed in the service API?

Solution
The best way to limit the possibility of exposing internal service details in the external
API is to make sure the external interface is designed to exist apart from the internal
service models. That means defining service API functionality on its own terms—not
simply exposing the direct service code to the “outside world.”

Essentially, API implementations (the interfaces) need to keep the service’s internal
models private. To do that you need to make sure the data properties, property collec‐
tions, and input/output parameters of the API are expressed as coherent elements
themselves—that they can “stand alone” separately from any internal service models.
The interface should be treated as its own independent design and implementation
effort, not just a “wrapper” of an existing backend service component.

Example
The quickest way to avoid leaking data/object models is to ignore them when design‐
ing the API. For example, let’s assume there is a simple ToDo service that supports
two local data object collections: item and user. They might look like this:

{"items" : [
 {"id":"q1w2e3r4","text":"This is an item","status":"active","nick":"mork"},
 ...
]}

{"users":[
 {"nickname":"mork","name":"Mark Morkelsen"},
 ...
]}

Let’s also assume that the possible status field values are limited to active or
closed.

You might think that the interface should also model two objects (item and user).
But it would be just as valid to model three:

{"items" : [
 {"id":"q1w2e3r4","text":"This is an item","status":"active","nick":"mork"},
 ...
]}

{"users" : [
 {"nickname":"mork","name":"Mark Morkelsen"},
 ...

168 | Chapter 5: Hypermedia Services

]}

{"status" : [
 {"name" : "active"},
 {"name" : "closed"},
 ...
]}

or even one:

{"todo" : [
 {"id":"q1w2e3r4","text":"This is an item",
 "status":"active",
 "nickname":"mork",
 "name":"Morkelsen"
 },
 ...
]}

The point here is to not blindly accept the service model as the interface model. Yes, if
or when the service internal model changes, there may be some work needed to
maintain compatibility between the published interface and the local service. But
that’s what API designs are meant to accomplish.

Discussion
Whenever possible, I model my API properties as a single, flat collection (like the
preceding example). This simplifies the client end of the process and frees the sup‐
porting services to use any local data storage model they wish. Services can even
change the storage model without adversely affecting the API. This denormalization
of any internal model makes it easier to maintain a stable external model even when
the internal model changes over time.

Years ago, when talking about this subject, I coined the axiom:
“Remember, when designing your web API, your data model is not
your object model is not your resource model is not your message
model.” I also gave a talk called “Web API Design Maturity Model”
that expands on this notion.

It is important to remember that the API is an independent interface. It’s fine if the
interface expects the person creating a new record to send a “denormalized” collec‐
tion of properties that will be regrouped and written to multiple storage locations. As
long as the service can safely manage the data (e.g., make sure there are no lost
updates or data conflicts), anything goes.

5.2 Preventing Internal Model Leaks | 169

https://oreil.ly/xrm2g
https://oreil.ly/aUhde

We’ll dig into the details of dealing with data storage in Chapter 6.

API designers are free to create any number of HTTP resources they wish in order to
support the expected interactions. Those interactions don’t need to follow the CRUD
(create, read, update, delete) meme so common for HTTP APIs. For example,
Table 5-1 is a resource designed to support the ToDo service referred to throughout
this recipe.

Table 5-1. Possible resource design for ToDo service interface
Action URL Method Request body Response body
Read List /todo/ GET none [{id,text,status,nick,name}]

Filter List /todo/?text={text} GET none [{id,text,status,nick,name}]

Create Item /todo/ PATCH {id,text,status,nick,name} [{id,text,status,nick,name}]

Update Item Text /todo/ PATCH {id,text} [{id,text,status,nick,name}]

Update Item Nick /todo/ PATCH {id,nick,name} [{id,text,status,nick,name}]

Update Item Status /todo/ PATCH {id,status} [{id,text,status,nick,name}]

Notice that Table 5-1 indicates that the ToDo list is a single resource that can be
modified to add and edit items from that single resource. How the service organizes
this information internally and/or stores this information is of no real interest to the
interface consumer as long as the client application can do the needed work.

Table 5-1 doesn’t include additional HTTP features, such as ETag,
If-Match, Last-Modified, and other integrity headers. See Recipe
6.2 for details.

See Also
• Recipe 3.1, “Creating Interoperability with Registered Media Types”
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 5.3, “Converting Internal Models to External Messages”
• Recipe 5.4, “Expressing Internal Functions as External Actions”

170 | Chapter 5: Hypermedia Services

• Recipe 6.1, “Hiding Your Data Storage Internals”
• Recipe 6.3, “Hiding Data Relationships for External Actions”

5.3 Converting Internal Models to External Messages
To support loose coupling between evolving services, you need to establish a stable
basis for communication between those services. A proven successful strategy is to
rely upon well-known, highly structured registered media types as the representation
format for API responses.

That means your service interface needs to respond with the same semantic informa‐
tion while varying the message format.

Problem
How do we organize our service interface to support content negotiation for API
consumers while still maintaining a low-cost/low-effort service API? What patterns
should we support within our interface code in order to support representing the
backend service data consistently in a standardized and well-known media type?
Finally, what are the advantages and challenges of representing the same internal data
for differing response message formats?

Solution
An important way to make sure your service interface design is not too tightly cou‐
pled to your service’s internal data (or object) model, is to approach the representa‐
tion step as a separate design effort. In other words, actively engage in the process of
designing your representations—don’t just settle for a simple, direct serialization of
internal models into external messages.

A series of formats were created to represent information for HTTP. These formats
contain enough structure (e.g., <html>, <head>, <body>, etc.) to support client appli‐
cations that can bind to the message format instead of binding to the message content
(e.g., givenName, id, telephone, etc.).

For a list of recommended response media types, see Appendix C.

The process of mapping parts of the service’s internal data/object model to the inter‐
face’s external object model usually takes a mix of algorithmic application and
creative design thinking. For some formats, like unstructured XML and JSON, the

5.3 Converting Internal Models to External Messages | 171

mapping can be quite literal: a simple serialization of the data into a message. But this
can be a bad idea. For example, direct serialization of the data model into a message
model exposes the internal model to the outside world and results in a brittle imple‐
mentation that is likely to break if or when the internal models change—which they
will! See Recipe 6.10 for details.

Instead, it is better to select a structured media type (SMT) like SIREN, Collection
+JSON, or even HTML as the basis for exchanging representations. Mapping the
internal data to one of these formats takes a bit more effort in the beginning—you
can do this “by hand” or rely on a prebuilt representative library for that media type
—but pays off over time since any future changes or even additional interfaces can
use the same library to render valid external messages for API consumers.

For more on designing service interfaces independent of the underlying service, see
Recipe 5.17.

Example
Service interface code that supports selectable media type responses needs to imple‐
ment two key runtime support elements. First, the service API needs to be able to dis‐
cover which formats the client prefers, and second, the service API needs to use that
information to render internal data in the preferred format.

HTTP defines the Accept header to allow clients to include their format preferences
when they send a request. When the service API sees an Accept header, it needs to
parse the value of that header and make a proper selection. You can review the HTTP
specification on the Accept header for details on how to interpret its contents.

A simple exchange might look like this:

*** REQUEST
GET /todo/list HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json, application/vnd.uber+xml

*** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json

Note that the service interface selected the application/vnd.collection+json for‐
mat here. When more than one preference is offered, services have some freedom on
which format they can return—including returning a default format that wasn’t even
listed by the client! See more on this in Recipe 5.5.

Once the service API selects a format to use for rendering the response, it needs to
map the internal data to the output representation per the specifications of the
selected response format. Often this is an easy fit, but sometimes internal data is a bit
tough to render and might even be left out of a response.

172 | Chapter 5: Hypermedia Services

https://oreil.ly/GLlue

Here’s an example of some internal service data that needs to be represented in
responses:

{
 "user" : {
 "id":"q1w2e3r4t5",
 "givenName":"Mark",
 "familyName":"Morkelsen",
 "nickName":"mork",
 "telephones":[
 {"type":"home", "value":"1-234-567-8901"},
 {"type":"work", "value":"1-987-654-3210"}
]
 }
}

Now, let’s assume the client has sent the following request:

GET /users/q1w2e3r4t5 HTTP/1.1
Host: api.example.org
Accept: application/json

A simple (but not recommended) way to represent the internal data would be to just
serialize it directly:

*** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/json
...

{
 "user" : {
 "id" : "q1w2e3r4t5",
 "givenName" : "Mark",
 "familyName" : "Morkelsen",
 "nickName" : "mork",
 "telephone" : [
 {"type" : "home", "value" : "1-234-567-8901"},
 {"type" : "work", "value" : "1-987-654-3210"}
]
 }
}

Next, let’s look at a request for a representation using the text/csv format:

GET /users/q1w2e3r4t5 HTTP/1.1
Host: api.example.org
Accept: text/csv

*** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/json
...

5.3 Converting Internal Models to External Messages | 173

"id","givenName","familyName","nickName","telephone_home","telephone_work"
"q1w2e3r4t5","Mark","Morkelsen","mork","1-234-567-8901","1-987-654-3210"

Notice the internal telephone object was rendered as a set of flat properties in the
CSV response. Clients may not even know the internal shape of the data.

Finally, here’s an example representation when the client included the application/
vnd.collection+json media type in the request:

{ "collection" :
 {
 "version" : "1.0",
 "href" : "http://example.org/users/q1w2e3r4t5",

 "links" : [
 {"rel" : "users", "href" : "http://example.org/users"},
 {"rel" : "products", "href" : "http://example.org/products"},
 {"rel" : "services", "href" : "http://example.org/services"}
],

 "items" : [
 {
 "href" : "http://example.org/users/q1w2e3r4t5",
 "data" : [
 {"name" : "id", "value" : "q1w2e3r4",
 "prompt" : "Identifier"},
 {"name" : "givenName", "value" : "Mark",
 "prompt" : "First Name"},
 {"name" : "familyName", "value" : "Morkelsen",
 "prompt" : "Last Name"},
 {"name" : "nickName", "value" : "Mork",
 "prompt" : "Nick"},
],
 "links" : [
 {"rel" : "telephones", "prompt" : "Telephones"
 "href" : "http://examples.org/users/q1w2e3r4t5/telephones"}
]
 }
]
 }
}

In this last case, quite a bit of “extra” information was supplied by the representative
in the API service, including mapping prompt values to each data point, including
link elements that point to related data, and even moving the telephone data array
to another, related resource.

The key message here is that designing representative for service data should not be
limited to blindly serializing the internal models.

174 | Chapter 5: Hypermedia Services

Discussion
During the implementation phase of a service API, it is a good practice to document
the rules you are using to convert internal models to external messages. This will help
share the algorithms with other developers and make it easier to debug any errors
you find along the way. It is not, however, a good idea to publish this representation
description to API consumers. They do not need to know the internal data or object
models behind your interfaces.

As time goes on, you are likely to encounter cases where the internal models of your
service change. In many cases these changes should not result in changes to your
external messages. For example, when the internal model property user.id is
changed to user.identifier, there is no need to change the external property.

However, some internal model changes include new properties (user.hatsize), and
these new properties may be reflected in the external messages when those changes
do not result in breaking existing API consumers. Adding a field at the end of a
text/csv row might be fine, but rearranging the field order in the rows (e.g., insert‐
ing the new field as the first field in the row) is likely a bad idea.

If you anticipate the internal models will change frequently, be sure
to select a representation format that is designed to reduce the
impact of such changes. For example, Collection+JSON is good for
varying models (all properties are represented as data.name and
data.value), but SIREN and HAL (since they bind to object prop‐
erties directly) are not.

While you can hardcode your service interface to always emit the same format (HAL,
SIREN, etc.), it is usually a good idea to honor the HTTP content negotiation process
(see Recipe 5.6) to allow API consumers to indicate their format preferences at run‐
time using the Accept request header. See Recipe 5.5 for additional details on how to
handle a client’s media type preferences.

I typically support at least two and try to support three or more, depending on the
situation. First, it is a good idea to select one media type with a high Hypermedia Fac‐
tor score, for example, Collection+JSON or SIREN (see Recipe 4.9 for more on H-
Factors). Second, it is a good idea to support a simple serialization format like JSON,
XML, and/or CSV since many API consumers will be able to use these simple formats
quickly. To support additional formats, you can add any other formats you and/or
your API consumers prefer to use.

If appropriate, it can also be helpful to support an HTML representation of your ser‐
vice API. It can help service developers while they test the interface design. It can also
help API consumers who want to “play around” with the API without investing lots

5.3 Converting Internal Models to External Messages | 175

http://amundsen.com/hypermedia/hfactor
http://amundsen.com/hypermedia/hfactor

of time in coding an API client. Finally, the HTML format can be a solid choice as
one of the high H-Factor media types in your service collection.

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 4.5, “Negotiating for Profile Support at Runtime”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.5, “Advertising Support for Client Response Preferences”
• Recipe 5.6, “Supporting HTTP Content Negotiation”
• Recipe 6.10, “Modifying Data Models in Production”

5.4 Expressing Internal Functions as External Actions
Once you adopt the practice of standardizing responses using structured media types
(SMTs), you also need to address the challenge of properly expressing the internal
functionality of the service(s) behind your interface. To do this, you need to rely on a
practice of expressing not just the service’s data models but also that service’s action
models—the functions of the service that need to be accessed via the external API.

Problem
How do you decide which internal functions within the service need to be exposed
via the API, and how do you express those methods in a consistent manner for API
consumers to find and operate as expected? What formats and/or patterns are avail‐
able for converting internal service functions into external interface actions?

Solution
The most direct way to expose a service’s internal functions as external actions is to
represent those functions using hypermedia controls (see Recipe 4.9). For example, in
HTML the function name (<form name="approveUser" …>), input arguments
(<input> controls), and output return values can be used to represent the internal
service function. However, it is not always possible (or even a good idea) to bind
external actions directly to internal service operations.

It is usually better to rely upon established external vocabularies when expressing
internal service functions. For example, an internal data parameter might be named
firstName. But that same parameter would be expressed as givenName in the external
interface (see Recipe 3.3). The API code can handle the translation between internal
and external names. This has the advantage of shielding the external interface from

176 | Chapter 5: Hypermedia Services

internal changes to the service. To extend the example, updates to the service might
result in firstName changing to fNameValue. In this case, only the middleware code
needs to be updated, not the actual external interface.

Finally, some internal actions—especially ones involving complicated computations
or processes—are best expressed in a more simplified way. A service (onboardingSvc)
might need to contact multiple dependent services (userSvc, customerRelationsSvc,
and accountSalesSvc) and pass data between them in order to complete a task. It is
often better to express this externally as a single action (sendOnboardingData)
instead of multiple dependent actions (see the following example for details).

Essentially, treat the act of designing the process interactions of your API as an inde‐
pendent activity. You can be as creative/inventive as you wish. Design a good inter‐
face; don’t just echo the service internals. Assume that there may be a “translation”
step between the API exchange and the internal service innovation. Above all, work
to maintain a loose coupling between the underlying service and the service interface
you publish.

Example
In a direct translation from internal function to external action, you can start with an
example of a service function:

function approveUser(userId, nickname, approver,level) {
 var approval = {};

 approval.userId = userId;
 approval.nickname = nickname;
 approval.approver = approver;
 approval.level = level;

 return data.create(approval);
}

And then translate these internal elements into an HTML FORM object in a response
message:

<form name="approveUser" enctype="application/x-www-form-urlencoded"
 method="post" action="http://api.example.org/users/approvals"
 target="approvalDisplay">
 <input name="userNick" type="string" value="mork" />
 <input name="approverName" type="string" value="Mr. Roboto" />
 <input name="approveLevel" type="string" value="nominal" />
 <input type="submit" value="Approve User" />
</form>
<iframe id="approvalDisplay" />

However, as we already discussed, direct translation is not usually a good idea. Here’s
an example that relies on a well-known external vocabulary (in this case, values from

5.4 Expressing Internal Functions as External Actions | 177

the Schema.org library) to express the external action using a standardized vocabu‐
lary even though that vocabulary is not supported by the underlying service.

Consider this simple internal method template for updating an existing user object:

function updateUser(id, fname, lname, email) {

 ...

 return userObject
}

Now, let’s look at the interface action (expressed as a Collection+JSON template)
using property names taken from the Schema.org library:

{
 "collection" {
 "template" : {
 "data" : [
 {"name" : "identifier", "value" : "q1w2e3r4", "prompt" : "User ID"},
 {"name" : "givenName", "value" : "Mark", "prompt" : "First Name"},
 {"name" : "familyName", "value" : "Morkelsen", "prompt" : "Last Name"},
 {"name" : "email", "value" : "mork@example.org", "prompt" : "Email"}
]
 }
 }
}

Finally, the code that accepts the update action can handle the translation between
internal and external names. For this example, the method that maps to the external
form uses the Schema.org property names (identifier, givenName, familyName, and
email) and stores the values of these parameters into the local user object properties
(id, fname, lname, and email):

function updateAction(identifier, givenName, familyName, email) {
 var user = data.read(identifier);
 if(user) {
 user.id = identifier;
 user.fname = givenName;
 user.lname = familyName;
 user.email = email;
 user = data.write(user);
 }
 return user;
}

There may also be scenarios when the interface has external actions that do not map
directly to internal functions. Consider the following external action:

<form name="declineContract" method="post" action = "...">
 <input name="customerId" value="q1w2e3r4t5" />
 <input name="contractId" value="o9i8u7y6.t5r4" />
 <input name="salesRepName" value="Mandy Miningham" />

178 | Chapter 5: Hypermedia Services

https://schema.org

 <input name="reviewerName" value="Mark Morkelsen" />
 <input name="reasonCode" value="Q201.B" />
 <textarea name="comments">Unable to locate collateral</textarea>
 <input type="submit" value="Decline Contract" />
</form>

There is no declineContract method in the underlying service code behind this
interface. However, there are a handful of actions that must be completed when a
contract is declined:

1. Create a declined log record.
2. Update the customer record.
3. Update the contract record.
4. Update the salesRep record.
5. Update the reviewer record.
6. Update the nationalCredit agency.

In this case, the service API most likely has a set of functions it needs to perform
against several dependent services. Some of these functions might be local (e.g., inter‐
nal objects in the service code), and some might be remote (e.g., other external serv‐
ices like the nationalCredit agency). All these details are “hidden” from the API
consumer.

The last example doesn’t show any handling of possible errors,
failed data updates, etc. For more on how to handle these cases, see
Chapter 7.

Discussion
Adopting the practice of “designing the external actions” is a great way to improve the
loose coupling aspect of your API. This is especially true when you create external
actions that have no direct service equivalent, since changes to the underlying service
need not be reflected directly in these independent actions. Basically, the more work
you do to design interface actions, the less likely it will be that future service changes
—even seemingly breaking changes—will adversely affect the API.

Sometimes a service will have a sequence of internal operations (intializeCustomer,
collectUserData, collectBankData, and finalizeCustomerData). Whenever
possible, it is a good idea to express these internal functions as a single external action
where you collect all the important data and then let the API code sort out the
sequence of actions. This can be done as a single “form” with all the inputs or, if
needed, you can use the “work in progress” workflow (see Recipe 7.10). This avoids

5.4 Expressing Internal Functions as External Actions | 179

dealing with future changes in the order of the sequence, or adding or removing
steps.

There are times when internal services rely on Boolean flags to control operations.
For example:

function approveUser(bool) {

 if(bool===true) {
 ...
 }
 else {
 ...
 }

 return results;
}

It is not a good idea to expose Boolean operations for external actions. This limits
your ability to modify or expand this list over time. Instead, it is a good idea to expose
enumerators (expressed here in HAL-FORMS) and let clients and services decide
how they want to render these values internally:

{
 "_templates" : {
 "default" : {
 ...
 "properties" : [
 {
 "name" : "approveUser",
 "prompt" : "User Approval",
 "options" : {
 "selectedValues" : ["No"],
 "inline" : ["No","Yes"]
 }
 }
]
 }
 }
}

Now, code within the API can translate the "Yes" / "No" values to true or false
before calling the underlying service. In addition, if future changes to the service
result in a possible pending status, the options element of the form can be updated
without any other changes to the API.

In most of my API implementations, I write up a small “mapping” function that auto‐
mates the task of translating internal and external names using a set of declarations.
That way I only need to update the rules in a single location for the entire API.

180 | Chapter 5: Hypermedia Services

See Also
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 6.3, “Hiding Data Relationships for External Actions”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”
• Recipe 7.17, “Supporting Local Undo or Rollback”

5.5 Advertising Support for Client Response Preferences
The HTTP protocol provides a handful of content-related parameters that clients can
use to indicate preferences. HTTP supports a collection of header parameters, the
OPTIONS method, and link relation values. However, sometimes you need a more
extensive way to identify and document client preferences for interactions. The solu‐
tion is to rely on a mix of HTTP protocol options and a few additional semantic ref‐
erences via a separate, addressable preferences resource.

Problem
How can a service advertise to API consumers all their possible preference options in
a consistent and scalable way? What HTTP headers are available? When does it make
sense to use the HTTP OPTIONS method? And when is it best to rely on link relation
and other values to signal a service API’s capabilities?

Solution
One of the advantages of using the HTTP protocol for accessing network services is
that HTTP has a wide range of “tuneable” values that clients and servers can use to
negotiate the details of request and response parameters. Essentially, services can
“advertise” one or more selectable aspects of the message exchange, and clients can
use this information to inform services of their preferences—all at runtime.

You’ll notice that this list contains elements from a wide range of
sources, such as the HTTP protocol, an HTML FORMS property, and
even a named link relation value. The work of advertising selecta‐
ble response options has a checkered history, so we have to make
do with the possibilities before us.

The following is a quick review of all the “tuneable” values in HTTP and how clients
and services can use them to customize message exchanges:

5.5 Advertising Support for Client Response Preferences | 181

Accept

The HTTP Accept header can be used to return a list of supported response
media types. Although it is not required, the values in this list should be from the
media types listed in the IANA Media Types document or some other source.

Allow

The HTTP Allow header is used to return a list of supported HTTP methods for
the service. The values in this list should be taken from the IANA Hypertext
Transfer Protocol Method Registry.

enctype

The enctype property of HTML forms can be used to return a list of supported
request media types. Although it is not required, the values in this list should be
from the media types listed in the IANA Media Types document or some other
source.

charset

The HTTP charset parameter can be used to indicate the list of supported char‐
acter sets for response bodies. The values in this list should be taken from the
IANA Character Sets document.

encoding

The HTTP encoding parameter can be used to return a list of supported encod‐
ings for response bodies. The values in this list should come from the IANA Con‐
tent Encoding Registry.

language

The HTTP language tag can be used to return a list of supported natural lan‐
guages for response bodies. The list of valid values should be taken from the
IANA Language Subtag Registry.

profile

The profile link relation value can be used to return a list of supported profiles
for responses. The contents of this element can be a list of valid URIs that repre‐
sent supported vocabularies or other descriptive documents (see Recipe 5.7 for
details).

There is another client preference value that HTTP supports:
accept-ranges. This allows clients to signal to services that they
can support range values for returning responses via the range
header. You can check out the HTTP specification for details.

182 | Chapter 5: Hypermedia Services

https://oreil.ly/vxcG8
https://oreil.ly/5ePjT
https://oreil.ly/Ku60c
https://oreil.ly/dXZ1d
https://oreil.ly/dXZ1d
https://oreil.ly/dvo4t
https://oreil.ly/hD5CN
https://oreil.ly/idWYs
https://oreil.ly/yMJjy
https://oreil.ly/GVk6K
https://oreil.ly/MNZRU
https://oreil.ly/MNZRU
https://oreil.ly/0muZk
https://oreil.ly/7YGxV
https://oreil.ly/7daeB
https://oreil.ly/auRyS

These should be accessible for client applications via the HTTP OPTIONS method or a
resource representation returned when following the "meta" link relation value
(rel="meta"). See the example for details.

Clients can request the service’s supported client preferences and then use values
from this response in their request to indicate to the service which formats, lan‐
guages, encodings, etc. they wish the service to use in responses.

Even when there is only one possible response that the service supports (e.g., "lan
guage":"en"), the service should still return the full meta resource in order to help
clients discover the values for these important parameters.

It is a good idea to support a link on the “Home” resource of your service interface
that points to the client preferences meta resource. This meta resource is where clients
can expect to find the list of (and possible values for) all the client preferences that
service supports.

Figure 5-2 is a diagram of the interaction model for supporting the meta resource list
of client preference options.

Figure 5-2. meta preference recipe

For details on the meta client preferences resource, check out the
online collection of ALPS documents associated with this book.

The following section shows examples of what is returned by the API when the meta
link is activated.

Example
When requested, the meta resource representation should list all the possible client
preference parameters supported by the API along with all the acceptable values for

5.5 Advertising Support for Client Response Preferences | 183

https://oreil.ly/TztQq
https://oreil.ly/TztQq
https://oreil.ly/RKhJ8

each. It is, of course, possible that the service API does not support all (or maybe any)
of the client preference options. The content of the response will vary accordingly.

Here is an example (in HAL format) of the response to the meta link or executing the
HTTP OPTIONS method:

{
 "_links" : {
 "self" : {"href" : "http://api.example.com/user-service/meta-preferences"},
 "home": {"href" : "http://api.example.com/user-service/"},
 "profile" :
 {"href" :
 "https://webapicookbook.github.io/alps-documents/meta/meta-preferences.json"
 }
 },
 "allow" : "GET PUT PATCH DELETE HEAD OPTIONS",
 "accept" : "application/vnd.hal+json application/vnd.collection+json",
 "enctype" : "application/x-www-form-urlencoded application/json",
 "charset" : "utf-8, iso-8859-1;q=0.7",
 "encoding" : "deflate gzip compress",
 "language" : "en es fr",
 "profile" : "https://alps.example.org/fhir-4.0.1"
}

While it is not required (by the HTTP specification) to include a body in the OPTIONS
response, it is a good practice to return this meta-preferences representation any‐
way. In cases where the OPTIONS are specific to a single resource, services can modify
the meta-preferences response accordingly. For example, a download link might
support more than one response format. Here is an example OPTIONS response in
SIREN format:

**** REQUEST ****
OPTIONS /file-system/download HTTP/1.1
Host: api.example.org
...

*** RESPONSE ***
HTTP/1.1 200 OK
Content-Type: application/vnd.siren+json
Content-Length: XX
Cache-Control: max-age=604800
Allow: GET PUT DELETE HEAD OPTIONS
Accept: application/zip application/gzip
Accept-Charset: utf-8
Accept-Encoding: compress
Accept-Language: en
Link: <https://webapicookbook.github.io/alps-documents/about/about.json>; \
 rel="profile"

{
 "class" : ["meta preferences"],

184 | Chapter 5: Hypermedia Services

 "links" : [
 { "rel" : ["self"], "href" : "http://api.example.org/file-system/download"},
 { "rel" : ["home"], "href" : "http://api.example.org/file-system/"},
 { "rel" : ["profile"],
 "href" : "https://api.example.org/profiles/meta-preferences.json"}
],
 "properties" : {
 "allow" : "GET PUT DELETE HEAD OPTIONS",
 "accept" : "application/zip application/gzip",
 "enctype" : "application/json",
 "charset" : "utf-8",
 "encoding" : "compress",
 "language" : "en",
 "profile" : "https://alps.example.org/downloads/"
 }
}

In the OPTIONS response, you can see that both the header space and the response
body contain the list of client preference parameters. It is a good idea to include both
sets of information since some client applications may only parse the header collec‐
tion and skip the content in the response body.

Discussion
It is rare that a single service interface supports the full range of the client preferences
listed here. The most common ones that clients are interested in are: allow, accept,
enctype, and sometimes language. The charset and encoding preferences are rarely
indicated.

Even if the service interface supports only one value for the preference item, that item
should be listed in the meta-preferences response. In this way, the meta-

preferences response becomes the runtime documentation of service options, and
that means API consumers will be able to rely on this response to get an up-to-date
listing of these parameters.

Be sure to include an item in your API documentation that tells
developers that your interface supports OPTIONS and/or the meta
link relation value.

There is a downside to relying solely on HTTP OPTIONS to communicate supported
client preferences. The HTTP specification explicitly states that OPTIONS is noncache‐
able. If you have lots of API consumers sending OPTIONS requests, you may run into
scaling problems for your API. However, offering a standalone meta-preferences
resource (for example, <link rel="meta" href="http://api.example.org/meta-

5.5 Advertising Support for Client Response Preferences | 185

preferences/" />) means you can mark that resource with a long cache lifetime and
reduce the expense of composing and returning client preference responses.

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 4.5, “Negotiating for Profile Support at Runtime”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.8, “Supporting Shared Vocabularies in Standard Formats”

5.6 Supporting HTTP Content Negotiation
One of the unique aspects of the HTTP protocol is the ability to select preferred
response body formats. Borrowed from the email specifications, the content-type
header implementation for HTTP has led to the creation of almost 1,500 different
media types registered in the official IANA Media Types registry, with more being
added each year. The challenge is knowing which media type to use, when to use it,
and how to make it possible for both clients and services to work out the details of
content negotiation.

Problem
HTTP allows clients and services to engage in “content negotiation”—the process of
selecting which media type to use when exchanging messages. How does this work?
What is the different between proactive and reactive content negotiation? And what
do service interfaces need to do to support content negotiation when it is
appropriate?

Solution
An important feature of HTTP is the ability to support multiple response formats.
This allows the same resource to return HTML for some consumers, CSV for others,
and so forth. Even more powerful is HTTP’s support for negotiating the response for‐
mat at runtime. In other words, API consumers and providers can work out just
which message format is used in a response at the very time the request is made.

There are two main “types” of content negotiation described in the HTTP specifica‐
tion: proactive and reactive. Each has advantages and challenges.

Proactive content negotiation
Proactive content negotiation (PCN) is the easiest to implement for HTTP services.
With PCN, API clients send a list of one or more preferred media types for responses,

186 | Chapter 5: Hypermedia Services

https://oreil.ly/3Q9FP
https://oreil.ly/CCqJm

and the server, using the provided list, proactively decides which media type to use.
This is sometimes called “server-driven content negotiation.”

Clients indicate their response preferences using the Accept header in requests, and
servers indicate their final section using the Content-Type header in responses (see
the examples later in this recipe).

In PCN, clients advise servers of their preference, and the servers make the final
determination of the response format. It should be noted that it is possible that the
service will respond on a format that was not included in the client’s Accept header.
Using the JSON example here, if the service does not support any JSON formats, that
service might respond with text/plain or application/HTML.

Reactive content negotiation
An alternative to proactive content negotiation by the service is reactive content
negotiation (RCN). In RCN, the service sends the client a list of possible representa‐
tion formats, and the client is expected to select the preferred format from the list and
make the request a second time, specifying which response format has been selected.
This puts the power of selection squarely in the hands of the client application but
also means an additional “round trip” is made each time.

RCN works well when there are lots of variables (language, message format, encoding
scheme, etc.), but the details of how server and client interact to select the preferred
response format are not spelled out in the HTTP specification. A common approach
is for servers to respond with HTTP status code 300 Multiple Choices, with a
response body that lists options for clients to review. The 300 Multiple Choices
response often carries a series of Link headers, and possibly a Location header in
case the client wants to just redirect automatically.

Example
Both proactive and reactive content negotiation are supported by HTTP. The follow‐
ing are some examples.

Proactive content negotiation

In PCN, the client sends a list of preferred response formats in the Accept header,
and the server determines the final selection:

**** REQUEST ****
GET /list HTTP/1.1
Accept: application/vnd.siren+json, application/vnd.hal+json, application/json
...

**** RESPONSE ****
200 OK HTTP/1.1

5.6 Supporting HTTP Content Negotiation | 187

https://oreil.ly/RJTOv
https://oreil.ly/RJTOv
https://oreil.ly/0AP9l
https://oreil.ly/0AP9l

Content-Type: application/json
....

In this case, the server selected application/json as the media type. Clients can pro‐
vide additional preference information in the form of a “quality” or q value, for
example:

**** REQUEST ****
GET /list HTTP/1.1
Accept: application/vnd.hal+json;q=0.8, application/json;q=0.4
...

**** RESPONSE ****
200 OK HTTP/1.1
Content-Type: application/json
....

In this example, the client indicated a higher preference for the application/
vnd.hal+json media type. However, the server still selected application/json as the
response format.

For more on quality (q) values, check out the HTTP specification.

Reactive content negotiation
In RCN, the server returns a list of supported representations, and the client makes
the final selection and resends the request:

**** REQUEST ****
GET /search HTTP/1.1

**** RESPONSE ****
HTTP/1.1 300 Multiple Choices
Link: <http://api.example.org/html/search>;rel="alternate html"
Link: <http://api.example.org/api/search>;rel="alternate api"
Location: http://api.example.org/html/search

Another RCN response returns the link values as HTML anchor tags in the body:

**** REQUEST ****
GET /search HTTP/1.1

**** RESPONSE ****
HTTP/1.1 300 Multiple Choices
Content-Type: text/html

<html>
 <title>Multiple Choices</title>

188 | Chapter 5: Hypermedia Services

https://oreil.ly/RDTl5

 <body>
 <h1>Multiple Choices</h1>

 HTML
 API

 </body>
</html>

Discussion
When services support multiple representation formats, the most common approach
is to use proactive (server-driven) content negotiation. This is the simplest interaction
even though it is possible the client may not receive its preferred format.

RCN has some major drawbacks. Servers are essentially guessing what format to
return. It is great when both client and service support the same formats, but there is
little to do when there is no direct match. The usual choice is for services to just
return whatever they prefer. The only real alternative is for services to return 406 Not
Acceptable when they can’t match a client’s Accept preferences.

A drawback for PCN is that clients often don’t know what the server supports. Serv‐
ices can solve this problem by supporting the “meta” services pattern that allows
services to advertise client preferences (see Recipe 5.5).

I rarely encounter the reactive version of content negotiation in the wild. Because
response details are not well specified, I don’t recommend using it for M2M use cases
unless both parties have worked out all the details ahead of time.

One way to avoid the content negotiation dance is to dedicate URL spaces for each
representation format. For example:

• http://api.example.org/siren/search
• http://api.example.org/hal/search
• http://api.example.org/collection-json/search
• http://api.example.org/html/search

Of course, the drawback here is that service interfaces need to support many more
URL paths.

In my experience the most effective approach is to document supported formats in
the API design-time documentation, then advertise client preferences (see Recipe 5.5)
and rely on proactive content negotiation at runtime.

5.6 Supporting HTTP Content Negotiation | 189

http://api.example.org/siren/search
http://api.example.org/hal/search
http://api.example.org/collection-json/search
http://api.example.org/html/search

See Also
• Recipe 3.1, “Creating Interoperability with Registered Media Types”
• Recipe 4.5, “Negotiating for Profile Support at Runtime”
• Recipe 5.5, “Advertising Support for Client Response Preferences”
• Recipe 6.7, “Using Media Types for Data Queries”

5.7 Publishing Complete Vocabularies for Machine Clients
When creating services that will be accessed by other services (e.g., M2M interfaces),
it is important to make sure both parties have a solid “understanding” of each other.
That means each message is complete and both parties recognize what is in the mes‐
sage. This is the essence of RESTful implementations. Roy Fielding explains it this
way: “A RESTful API (done right) is just a website for clients with a limited vocabu‐
lary.”

Problem
How can we make sure an API consumer will “understand” service responses ade‐
quately? What does it mean to send messages that are “self-describing”? What needs
to be included when describing messages?

Solution
The best way to make sure an API consumer “understands” messages from the API
provider is to produce a complete vocabulary document that lists all the important
data and action properties that may appear in a message. Leonard Richardson refers
to these values as “magic strings”. These are strings that services say “mean some‐
thing” and that API providers and consumers can use to “tell each other” important
information. In this book, I refer to these collections of magic strings as vocabularies
or sometimes profiles.

The profile link relation type is defined in RFC 6906 as to “allow clients to learn
about additional semantics (constraints, conventions, extensions) that are associated
with the resource representation.” Applying a profile to a resource does not change
the meaning of the contents in a message. Instead, profiles provide additional infor‐
mation about the message.

A Profile by Any Other Name
I’ve seen several terms used to identify this definitive list of data and action properties
such as “dictionary” and “glossary,” even “schema.” But I would not use the terms
“data dictionary” or “data model.” That’s because service vocabularies define more

190 | Chapter 5: Hypermedia Services

https://oreil.ly/dxgtv
https://oreil.ly/dxgtv
https://oreil.ly/ABEku
https://oreil.ly/7daeB

than just the data properties of a service or properties of named objects. They also
define all the action details, including links, forms, and query strings.

A service profile contains all the identifiers it uses with messages. For example, con‐
sider the following HTML FORM:

<form name="create-template" action="http://api.example.org/users"
 method="post" enctype="application/x-www-form-urlencoded">
 <input name="id" value="q1w2e3r4" />
 <input name="familyName" value="Mark" />
 <input name="givenName" value="Morkelson" />
 <input name="telephone" value="+1-555-123-4567" />
 <input name="email" value="mork@example.org" />
 <input name="status" value="active" />
 <input type="submit" />
</form>

The vocabulary information in this form is: create-template, id, familyName, given
Name, telephone, email, and status. Both the API service and the API consumer
need to recognize and “understand” what these values represent. Notice that I did not
include the values for those elements (e.g., id=q1w2e3r4), just the names. Also, I did
not include the media type’s structural elements in my list (e.g., name, action, method,
enctype, etc.).

It is not enough just to identify the vocabulary elements. You also need to offer some
explanation of what they represent and how they may appear in a message. For exam‐
ple, the create-template semantic value may appear as the name value of a form ele‐
ment in HTTP messages. This identifies the form clients can use to add new records
to the system.

You can also include additional information in your semantic profile documents,
such as the source of the string value. For example, familyName is defined in the
online dictionary Schema.org.

Example
The following are some example vocabulary documents (aka semantic profiles) for
the person API listed in the book’s repo. Here’s some sample output from that service:

{
 "collection": {
 "version": "1.0",
 "href": "http://localhost:8181",
 "title": "BigCo Activity Records",
 "links": [
 {
 "name": "home", "href": "http://localhost:8181/",
 "rel": "home", "prompt": "Home"

5.7 Publishing Complete Vocabularies for Machine Clients | 191

https://oreil.ly/bKUaB
https://oreil.ly/SamLR

 },
 {
 "name": "list", "href": "http://localhost:8181/list/",
 "rel": "list", "prompt": "List"
 }
],
 "items": [
 {
 "id": "22s3k36pkn4",
 "rel": "person",
 "href": "http://localhost:8181/22s3k36pkn4",
 "data": [
 {"name": "id", "value": "22s3k36pkn4", "prompt": "id"},
 {"name": "givenName", "value": "Mork", "prompt": "givenName"},
 {"name": "familyName", "value": "Mockery", "prompt": "familyName"}
],
 "links": [
 {
 "name": "read", "href": "http://localhost:8181/22s3k36pkn4",
 "rel": "read", "prompt": "Read"
 }
]
 }
],
 "queries": [
 {
 "name": "filter",
 "href": "http://localhost:8181/filter/",
 "rel": "filter",
 "prompt": "Search",
 "data": [
 {"name": "givenName", "value": ""},
 {"name": "familyName", "value": ""}
]
 }
],
 "template": [
 {"name": "id", "value": "", "prompt": "id"},
 {"name": "givenName", "value": "", "prompt": "givenName"},
 {"name": "familyName", "value": "", "prompt": "familyName"}
]
 }
}

At minimum, you should list all the semantic identifiers and include a description
(see Table 5-2).

Table 5-2. Person API semantic profile
Identifier Description

id Record identifier for a person record

192 | Chapter 5: Hypermedia Services

Identifier Description

givenName Given name for a person record

familyName Family name for a person record

person Indicates a person record

home Hypermedia control to navigate to the Home view

list Hypermedia control to navigate to the List view

read Hypermedia control to navigate to a single person record

filter Hypermedia control to filter the List view

As additional information, you can also list where—in the message—each element is
likely to appear (see Table 5-3).

Table 5-3. Person API semantic profile with element locations
Identifier Description Element

id Record identifier for a person record name

givenName Given name for a person record name

familyName Family name for a person record name

person Indicates a person record rel

collection Identifies a collection of records rel

item Identifies a single record rel

home Hypermedia control to navigate to the Home view rel, name

list Hypermedia control to navigate to the List view rel, name

read Hypermedia control to navigate to a single person record rel, name

filter Hypermedia control to filter the List view rel, name

It is important to remember that the third column in Table 5-3 (“Element”) will likely
contain different elements depending on the media type returned. For example, if the
service returned person representations using the application/forms+json media
type, the table would look like Table 5-4.

Table 5-4. Person API semantic profile with media type locations
Identifier Description Element (Cj) Element (Fj)

id Record identifier for a person record name KEY

givenName Given name for a person record name KEY

familyName Family name for a person record name KEY

person Indicates a person record rel KEY

collection Identifies a collection of records rel rel

item Identifies a single record rel rel

5.7 Publishing Complete Vocabularies for Machine Clients | 193

Identifier Description Element (Cj) Element (Fj)

home Hypermedia control to navigate to the Home view rel, name rel, name, id

list Hypermedia control to navigate to the List view rel, name rel, name, id

read Hypermedia control to navigate to a single person record rel, name rel, name, id

filter Hypermedia control to filter the List view rel, name rel, name, id

Notice that for the FormsJSON format, some semantic values appear as structural ele‐
ments in JSON (id, givenName, familyName, and person), and others appear as value
elements (collection, item, list, home, read, and filter). This mix of structure
and value is what makes each media type unique. If your service supports more than
one media type, you’ll need to supply semantic profile information that properly
“maps” semantic elements to message elements:

{
 "person": {
 "links": [
 {
 "id": "home",
 "name": "home",
 "href": "http://localhost:8181/",
 "rel": "home",
 "title": "Home",
 "method": "GET",
 "properties": []
 },
 {
 "id": "list",
 "name": "list",
 "href": "http://localhost:8181/list/",
 "rel": "list collection",
 "title": "List",
 "method": "GET",
 "properties": []
 },
 {
 "id": "filter",
 "name": "filter",
 "href": "http://localhost:8181/filter/",
 "rel": "filter collection",
 "title": "Search",
 "method": "GET",
 "properties": [
 {"name": "givenName", "value": ""},
 {"name": "familyName", "value": ""}
]
 }
],
 "items": [
 {

194 | Chapter 5: Hypermedia Services

 "links": [
 {
 "id": "read_22s3k36pkn4",
 "name": "read",
 "href": "http://localhost:8181/22s3k36pkn4",
 "rel": "read item",
 "title": "Read",
 "method": "GET",
 "properties": []
 }
],
 "id": "22s3k36pkn4",
 "givenName": "Mork",
 "familyName": "Mockery"
 }
]
 }
}

Discussion
Essentially, semantic profiles carry the domain elements (person, list, filter, etc.)
of the service. You can think of semantic profiles as a method for documenting the
service domain.

It is worth pointing out that these semantic profiles do not explain how the filter
hypermedia control works—just that it might appear in the response. Semantic pro‐
files assume the API consumer application understands that media type is independ‐
ent of the profile. This separation between understanding message formats and
understanding the semantics within the message is an important feature of well-
designed hypermedia services.

When your service doesn’t use a registered media type and instead uses a serialization
formation like plain JSON or XML, services generally embed the semantics of the
domain into the structure of the message. For example, here’s a possible response for
the person service in XML:

<list>
 <home href="..." rel="collection"/>
 <list href="..." rel="collection"/>
 <filter href="..." method="get" rel="collection">
 <givenName></givenName>
 <familyName></familyName>
 </filter>
 <person id="..." rel="item read" href="...">
 <familyName>...</familyName>
 <givenName>...</givenName>
 </person>
</list>

5.7 Publishing Complete Vocabularies for Machine Clients | 195

The semantic profile mapping would look like Table 5-5.

Table 5-5. Person API semantic profile with both JSON and XML location hints
Identifier Description Element (Cj) Element (Fj) Element (XML)

id Record identifier for a person record name KEY ATTRIBUTE

givenName Given name for a person record name KEY ELEMENT

familyName Family name for a person record name KEY ELEMENT

person Indicates a person record rel KEY ELEMENT

collection Identifies a collection of records rel rel rel

item Identifies a single record rel rel rel

home Hypermedia control to navigate to the Home view rel, name rel, name, id ELEMENT

list Hypermedia control to navigate to the List view rel, name rel, name, id ELEMENT

read Hypermedia control to navigate to a single person
record

rel, name rel, name, id rel

filter Hypermedia control to filter the List view rel, name rel, name, id ELEMENT

In this case, the domain semantics are so intertwined with the message format that
changes in the internal domain elements may break structural changes in the external
interface (e.g., renaming elements, adding/removing attributes, etc.). Whenever pos‐
sible, keep the message details (the external interface) independent of the domain
details (internal functionality). When I see cases where the domain semantics appear
as structural elements within a response, this sets off alarm bells for me to rethink my
message design to make sure I’m not leaking internal details to the external interface.
See Recipe 5.4 for more on this topic.

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.3, “Converting Internal Models to External Messages”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 5.8, “Supporting Shared Vocabularies in Standard Formats”

5.8 Supporting Shared Vocabularies in Standard Formats
When service interfaces adopt the practice of using standard structured media types
(SMTs) for exchanging messages, they also need to standardize the manner in which
the domain-specific properties and actions (or semantics) of the service are expressed
at runtime. This is similar to the message format challenge. The solution is to rely on

196 | Chapter 5: Hypermedia Services

standardized formats to express meaning. The real work is to express internal data or
object models as consistent external semantic models.

Problem
How can we standardize the way in which the meaning of content is transferred
between machines? What formats are available for this work, and what is the pattern
for expressing internal data and process models as standardized semantic models?

Solution
Just as API consumers rely on standardized protocols (e.g., HTTP) and standardized
message formats (e.g., SIREN, Collection+JSON, etc.), they also can benefit from
standardized vocabularies. That means listing all the data properties and action
names in a standard format that the client understands.

This means there needs to be a single source for all the possible names of things that
might appear in your API; for example, any value that might appear in attributes like
id, name, class, rel, or similar structural elements. A collection of these values can
cover a topic or domain (like “User Management” or “Accounting”).

There are a couple of options for carrying vocabulary data in a standardized form.
One of the oldest known solutions is to use a Resource Description Framework
(RDF) format like RDF/XML, Turtle, and JSON-LD. There are a handful of schema-
centric RDF languages, including OWL and RDF Schema, too. The JSON-LD format
is the one I see more often when APIs use an RDF-based format.

It is also possible to use schema documents: XSD for XML messages and JSON
Schema for JSON-based messages. While these formats are well established with lots
of tooling, it is worth noting that common uses of XSD and JSON Schema are limited
to defining a vocabulary’s data property names and usually don’t include action
names (e.g., names of forms, link relation identifiers, etc.).

The format I use to document vocabularies is the Application-Level Profile Semantics
(ALPS) format. There are serializations of ALPS for XML, JSON, and even YAML.

Example
The following is an RDF version of a person expressed in the FOAF (friend of a
friend) vocabulary:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<#JW>
 a foaf:Person ;

5.8 Supporting Shared Vocabularies in Standard Formats | 197

https://www.w3.org/RDF
https://www.w3.org/RDF
https://oreil.ly/jmQS3
https://oreil.ly/UV1eM
https://oreil.ly/sRV7J
https://oreil.ly/YTvwl
https://oreil.ly/8XOy6
https://oreil.ly/OK7jO
https://json-schema.org
https://json-schema.org
https://oreil.ly/6DLZn
https://oreil.ly/6DLZn
https://oreil.ly/jVQRj
https://oreil.ly/jVQRj

 foaf:name "James Wales" ;
 foaf:mbox <mailto:jwales@bomis.com> ;
 foaf:homepage <http://www.jameswales.com> ;
 foaf:nick "Jimbo" ;
 foaf:depiction <http://www.jameswales.com/aus_img_small.jpg> ;
 foaf:interest <http://www.wikimedia.org> ;
 foaf:knows [
 a foaf:Person ;
 foaf:name "Angela Beesley"
] .

<http://www.wikimedia.org>
 rdfs:label "Wikimedia"

Figure 5-3 is a diagram of that same RDF document using the “:isSemantic” visualiza‐
tion service.

Figure 5-3. FOAF RDF rendering of a person

For another approach, the following is a portion of the ALPS document that details
the person service API we’ve been referring to throughout this recipe. See Recipe 3.4
for details on the ALPS format:

{
 "$schema": "https://alps-io.github.io/schemas/alps.json",
 "alps":
 {
 "version": "1.0",
 "title": "Person Service API",

 "descriptor" : [
 ...
 {"id": "home", "type": "semantic",
 "title":"Home (starting point) of the person service",

198 | Chapter 5: Hypermedia Services

https://oreil.ly/UAPe8
https://oreil.ly/UAPe8

 "tag":"taxonomy",
 "descriptor": [
 {"href": "#goHome"},
 {"href": "#goList"}
],
 "doc" : {"value" : "Person API starting point"}
 },
 {"id": "collection", "type": "semantic",
 "title":"List of person resources",
 "tag":"taxonomy",
 "descriptor": [
 {"href": "#person"},
 {"href": "#goHome"},
 {"href": "#goList"},
 {"href": "#goFilter"},
 {"href": "#goItem"},
 {"href": "#doCreate"}
],
 "doc" : {"value" : "List of person resources"}
 },
 {"id": "item", "type": "semantic",
 "title":"Single person resource",
 "tag":"taxonomy",
 "descriptor": [
 {"href": "#person"},
 {"href": "#goHome"},
 {"href": "#goList"},
 {"href": "#goFilter"},
 {"href": "#goItem"},
 {"href": "#doUpdate"},
 {"href": "#doStatus"},
 {"href": "#doRemove"}
],
 "doc" : {"value" : "A single person resource"}
 },
 ...
]
 }
}

Figure 5-4 is a graphical representation of the full person profile using the “app-state-
diagram (ASD)” tool.

5.8 Supporting Shared Vocabularies in Standard Formats | 199

https://oreil.ly/G7Rnn
https://oreil.ly/G7Rnn

Figure 5-4. ALPS rendering of a person

A key difference between RDF and ALPS is that RDF focuses on the relationship
between data items, and ALPS focuses on the relationship between action items. One
vocabulary format that bridges that gap pretty well is the Hydra ontology.

Discussion
Service APIs can use semantic profile URLs as identifiers without needing to fully
understand what is contained in a semantic profile document. For example, by
including a profile URL in the header collection for responses, the service API is tell‐
ing API consumers what vocabulary that service API “speaks”:

**** REQUEST ****
GET /shopping/ HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Link: <http://docs.alps.io/shopping-v2.json>; rel="profile"

200 | Chapter 5: Hypermedia Services

https://oreil.ly/yEGsL

In this example, the API service is “advertising” that it supports version 2 of the shop
ping profile. For more on how API providers and consumers can negotiate for profile
support, see Recipe 4.5.

Profiles that detail the semantics of an interface do not fill the same role as schema
documents. Schemas are used to describe objects or document messages. Semantic
profiles are used to describe the way these objects (or documents) interact with each
other. Publishing a profile document helps developers (and machines) understand
the problem space—the possibilities within an API. Depending on the message for‐
mats you are using, you may also want to publish schema documents to help people
and machines understand the types of objects and documents that will be passed
around within the problem space. See Recipe 4.7 for more on how to take advantage
of schema documents for APIs.

It is also worth mentioning that semantic profile documents like ALPS are not the
same thing as API definition documents such as OpenAPI, AsyncAPI, Protobuf,
SOAP, etc. Semantic profiles provide a complete vocabulary of properties and actions
for a collection of APIs (those that support that profile). API definition documents
provide details on just how a single instance of a service API is implemented—the
one that lives at http://api.example.org/shopping, for example.

An important part of proper support for semantic profiles is mapping the profile ele‐
ments to media type elements in the messages that are exchanged. See Recipe 5.7 for
more on how to document profile/media type mapping.

It is a good idea to include semantic profile documents in all your service API docu‐
mentation. This helps API consumers by providing a detailed list of vocabulary ele‐
ments and can provide important hints to API consumers on how to navigate the
“problem space” your service supports. See Recipe 5.10 for a more comprehensive list
of assets services APIs should provide to consumers.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.5, “Negotiating for Profile Support at Runtime”
• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 5.6, “Supporting HTTP Content Negotiation”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.10, “Publishing API Metadata”
• Recipe 7.1, “Designing Workflow-Compliant Services”

5.8 Supporting Shared Vocabularies in Standard Formats | 201

http://api.example.org/shopping

5.9 Publishing Service Definition Documents
Most service APIs should publish a Service Definition Document (SDD) that explic‐
itly describes the shared interface that both API providers and API consumers need
to understand in order to successfully interact. Today, the most common way to do
this is to publish your API’s definition in one of several standard formats.

Problem
What are the common SDD formats? How can you easily share SDDs with API con‐
sumers? What URLs and/or link relation values should be used when sharing SDDs?
Along with direct links in the API, should links to SDDs be listed in other locations?
Appear in other documents?

Solution
For most APIs, there is a fixed set of URLs and message bodies that are shared at run‐
time. These fixed “endpoints” and “objects” can be documented in a number of differ‐
ent formats based on the style of the service interface implementation.

The most common API styles (and their related SDDs) are:

HTTP CRUD
OpenAPI, Web Application Description Language (WADL)

Event-driven
AsyncAPI, CloudEvents

Remote procedure
Protocol buffers, XML-RPC, JSON-RPC

Remote data query
Schema Definition Language (for GraphQL), OData

Remote messaging
Web Service Definition Language (WSDL)

Hypermedia
Application-Level Profile Semantics (ALPS)

Typically, SDDs are designed to streamline the work of generating human-readable
documentation and/or generating API consumer code. Sometimes SDDs are actually
generated from code. For example, both OpenAPI and WSDL can be generated from
existing source code. As of this writing, many of the formats are authored “by hand”
as part of the service interface design process.

However the document is created, it is a good idea to publish that document at an
easily found location. This will help API client application developers quickly get up

202 | Chapter 5: Hypermedia Services

to speed on consuming the service API successfully. The best way to do this is to
return a link to the SDD in HTTP responses either as a link header, within the
response body, or both. RFC 8631 defines a link relation value of service-desc to
use when identifying links that point to SDD documents. It is also a good idea to
return a pointer to the SDD in a link header in response to an HTTP OPTIONS
request. See the examples in this recipe for details.

It is a good idea to include a link to the SDD document in your API
metadata document (see Recipe 5.10).

Example
There are three good places to advertise your API’s SDD location: the HTTP link
response header, as part of your interface’s service metadata, and as part of the HTTP
OPTIONS response.

SDDs in HTTP responses

You can return a pointer to the API’s SDD as a link header in any API response:

HTTP/1.1 200 OK
Content-Type: application/vnd.hal+json
Link: <http://api.example.org/service-desc>; rel=service-desc
...

You can also return this information in the body of the response:

HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
...

{ "collection" : {
 "links" : [
 {"rel": "service-desc", "href": "http://api.example.org/service-desc"}
]
 ...
}}

When the format supports it, you can return the SDD location in both the header and
body of a response.

SDDs in service metadata responses
You can also return the location of the SDD in your API’s metadata document (see
Recipe 5.10). The format I recommend for service metadata is APIs.json, and that
specification has reserved keywords for the most common SDD formats.

5.9 Publishing Service Definition Documents | 203

https://oreil.ly/MNR2H

Here’s a snippet of an APIs.json document that cites support for an OpenAPI SDD:

{
 "name": "Example API",
 "type": "Index",
 "created": "2014-04-07",
 "modified": "2020-09-03",
 "url": "http://example.com/apis.json",
 "specificationVersion": "0.14",
 "apis": [
 {
 "name": "Example API",
 "humanURL": "http://example.com",
 "baseURL": "http://api.example.com",
 "properties": [
 {"type": "OpenAPI", "url": "http://example.com/openapi.json"}
]
 }
]
 ...
}

If you are using an SDD format that is not currently covered by the
APIs.json specification, you can add your own format as an exten‐
sion, too.

SDDs in HTTP OPTIONS responses

You can include the SDD in a link header and/or link the body of the OPTIONS
response too:

**** REQUEST ****
OPTIONS / HTTP/1.1
Host: api.example.org
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.siren+json
Content-Length: XX
Cache-Control: max-age=604800
Allow: GET PUT DELETE HEAD OPTIONS
Accept: application/zip application/gzip
Accept-Charset: utf-8
Accept-Encoding: compress
Accept-Language: en
Link: <https://api.example.org/service-desc>; rel="service-desc"

See Recipe 5.5 for more on using the OPTIONS method.

204 | Chapter 5: Hypermedia Services

Discussion
It is a good idea to store the SDD document in the root folder of the service interface
when possible. It can also be helpful to name the document service-desc. If you do
these two things consistently, your API consumers can “assume” the location of the
SDD, which will make it easier on API developers.

The formats collection is not an exhaustive list. The reader may be using other SDD
formats, and some large organizations even have their own in-house SDDs that they
use. I’ve included the SDDs that, in my experience, have appeared most often “in the
wild.”

In some cases, the service supports multiple interface styles (e.g., HTTP CRUD and
GraphQL). In that case, you can return multiple SDD documents in the header or
body of your responses:

HTTP/1.1 200 OK
Content-Type: application/vnd.hal+json
Link: <http://api.example.org/openapi/service-desc>; rel="service-desc"; \
type="application/openapi+json"
Link: <http://api.example.org/graphql/service-desc>; rel=service-desc"; \
type="application/sdl+json"
...

You can use the type property of the Link header to indicate the expected format of
the response (see the preceding example). The challenge here is that most SDD for‐
mats do not have their own media type identifier string registered with the IANA. For
my own work, I’ve adopted a set of media type identifiers and include them in my
API documentation. This is less than ideal but works as expected. Hopefully, by the
time you are reading this book, more SDD formats will have acquired their own reg‐
istered media type identifiers.

Note that there isn’t an agreed standard SDD format for hypermedia-style APIs. For
now, I recommend including an ALPS document as part of the API’s profile (see
Recipe 5.7).

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.10, “Publishing API Metadata”

5.9 Publishing Service Definition Documents | 205

https://oreil.ly/EEAst

5.10 Publishing API Metadata
As the number of application interfaces on the open web grows, there is a need for a
common format and common vocabulary for describing metadata about the API.
This is especially important when service providers want to communicate important
details about the API without the need for physical meetings, interactions, and/or
bespoke description and documentation efforts. Luckily, there is a strong contender
for carrying this information: the APIs.json specification.

Problem
How can we represent important metadata about a service interface (supported for‐
mats, vocabularies, documentation, security, etc.) in a standardized way that allows
API consumers to easily find and understand the metalevel details of the interface?

Solution
A very dependable way to catalog and publish API metadata is to use the APIs.json
open specification. It has a vocabulary and structural layout that covers most of the
important metadata elements for APIs (basic definitions, properties of the API,
important URLs, key contacts and maintainers, etc.). It is also extensible so API pro‐
viders can, when needed, expand the APIs.json document (in a backward-compatible
way) to fit their needs.

APIs.json, APIs.yaml, and APIS.txt
APIs.json documents can be formatted as JSON, YAML, or TXT files. You can learn
more about APIs.json by visiting the specification site. You can also find a publicly
hosted version of a search engine for APIs.json documents at http://apis.io.

The APIs.json specification defines several key sections of the document:

Root
The name, description, URL, and other basic information about the API

APIs
The list of APIs identified in the document

Tools
The list of open source tooling available as part of operations

Specifications
The list of open specifications adopted as part of operations

206 | Chapter 5: Hypermedia Services

https://oreil.ly/Imjf1
https://oreil.ly/gQtxo
https://oreil.ly/gQtxo
http://apisjson.org
http://apis.io

Resources
The list of resources available for API operations

Common
A list of common properties for use across all APIs and tools

Include
Other APIs.json documents to include in this document

Maintainers
A collection of persons and/or organizations maintaining this API

Providers can document the API’s metadata in a single document (named apis.json)
available at the root folder of the service (e.g., http://api.example.org/apis.json). APIs
an also provide a link relation value that can be included in an HTTP header and/or
within the body of an HTTP response. The service-meta relation value (defined in
RFC 8631) is the recommended value to use when pointing to the API’s APIs.json
document.

It’s a good idea to support a link on the “Home” resource of your service interface that
points to the service-meta resource (see Figure 5-5).

Figure 5-5. API metadata recipe

5.10 Publishing API Metadata | 207

http://api.example.org/apis.json)
https://oreil.ly/ymnrn

For details on the service-meta APIs.json resource, check out the
online collection of ALPS documents associated with this book.

Example
Here is a short example of an APIs.json document:

HTTP/1.1 200 OK
Content-Type: application/apis+json
...

{
 "name": "Example API",
 "type": "Index",
 "description": "This is an example APIs.json file.",
 "image": "https://api.example.org/logo.jpg",
 "tags": ["Application Programming Interface","API"],
 "created": "2014-04-07",
 "modified": "2020-09-03",
 "url": "http://example.com/apis.json",
 "specificationVersion": "0.14",
 "apis": [
 {
 "name": "Example API",
 "description": "This provides details about a specific API.",
 "humanURL": "http://example.com",
 "baseURL": "http://api.example.com",
 "tags": ["API","Application Programming Interface"],
 "properties": [
 {"type": "Documentation","url": "https://example.com/documentation"},
 {"type": "OpenAPI","url": "http://example.com/openapi.json"}
],
 "contact": [{"FN": "APIs.json","email": "info@apisjson.org"}]
 }
],
 "specifications": [
 {"name": "OpenAPI", "url": "https://openapis.org"},
 {"name": "JSON Schema","url": "https://json-schema.org/"}
],
 "common": [
 {"type": "Signup","url": "https://example.com/signup"},
 {"type": "Authentication","url": "http://example.com/authentication"},
 {"type": "Login","url": "https://example.com/login"}
],
 "maintainers": [{"FN": "Mark Morkelson","email": "mork@example.org"}]
}

208 | Chapter 5: Hypermedia Services

https://oreil.ly/RKhJ8

Services can advertise availability of the APIs.json document in HTTP responses:

HTTP/1.1 200 OK
Content-Type: HTML
Link: <http://api.example.org/apis.json>; rel=service-meta
...

<html>
 <head>
 <link rel="service-meta" href="http://api.example.org/apis.json" />
 </head>
 <body>
 ...
 </body>
</html>

API client applications can also automatically “look” for APIs.json documents by call‐
ing to the default location of the file as stated in the specification:

GET /apis.json HTTP/1.1
Accept: application/apis+json, application/yaml, text/plain
Host: http://api.example.org

Discussion
It is important to note that the APIs.json specification is meant to carry related infor‐
mation about a service interface, but it is not meant to describe or define that interface
in detail. Other formats, such as OpenAPI, AsyncAPI, Protobuf, etc., were designed
for that purpose. See Recipe 5.9 for details on service definition formats and how to
share them with API consumers.

As of this writing, the APIs.json specification is not yet finalized.
However, I’ve found the format (and the related search engine) sta‐
ble and useful, and I encourage readers to keep an eye on this
specification.

One of the reasons to adopt the APIs.json format for service metadata is that there is a
related open source project that provides a search engine that uses the APIs.json for‐
mat as input. You can find the current edition of the APIs.json search engine project
online. As of this writing, you can fork or download this project and start up your
own API search engine to host APIs.json documents.

An added feature of the APIs.json search engine project is support for its own API
dedicated to automating the uploading and validation of APIs.json documents for that
search engine. This would make it possible to create an automated process for regis‐
tering APIs with target API search engines.

5.10 Publishing API Metadata | 209

https://oreil.ly/SYgMp
https://oreil.ly/SYgMp

The APIs.json specification contains more than 50 reserved words. Most of them are
known as “Properties Elements” and are used for the type values for entries in the
common section of an APIs.json document. Here are just a few samples:

• Signup

• Login

• TermsOfService

• InterfaceLicense

• PrivacyPolicy

• Security

• StatusPage

• Pricing

• Rate Limits

You can also add your own names to this list of “Properties Elements” as extensions
to the specification.

Another specification that could be used to carry API metadata is the JSON Home
specification. However, this specification proposal has not been updated in several
years, and I have not seen examples of JSON Home “in the wild” as often as I have
seen the APIs.json specification discussed here.

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.9, “Publishing Service Definition Documents”
• Recipe 7.1, “Designing Workflow-Compliant Services”

5.11 Supporting Service Health Monitoring
One of the advantages of using microservices on the web is that you don’t have to
program all the functionality yourself; you can rely on the creativity of others. How‐
ever, adding dependent services to your own increases the likelihood of failure on a
distributed network. A good way to monitor the status of dependent services is to
make regular “health checks” to other services to make sure they are up and running
properly.

210 | Chapter 5: Hypermedia Services

https://oreil.ly/fzSoX
https://oreil.ly/fzSoX

Problem
How can we consistently and regularly monitor the status (or health) of services on
the web to make sure they are up and running and performing as expected? What are
the common values we should monitor to assess the health of a service? What is the
standard format for passing those status values? How do we advertise support for
health monitoring, and how do we share that status data?

Solution
Health and status monitoring of services running on the web is a common challenge.
The good news is that there has been lots of good work in the area of standardizing
this process over the last few years. There is currently an expired draft document
called “Health Check Response Format for HTTP APIs”. This specification was first
published in 2018, and I’ve been using it as a guide for implementing health and sta‐
tus checking for quite some time.

The Health Check specification defines several properties, including these basics:

status

Indicates the service status (pass, fail, warn)

version

Public version of the service

releaseId

Service release/version

notes

Array of notes relevant to current state of health

output

Raw error output, in case of fail or warn states

checks

An object providing detailed health statuses of additional downstream systems

links

An object containing link relations and URIs for external links that may contain
more information about the health of the service

serviceId

A unique identifier of the service

description

A human-friendly description of the service

5.11 Supporting Service Health Monitoring | 211

https://oreil.ly/QPgD7

The checks object represents a collection of related “downstream”
services. It is a bit of a “look ahead” to the health of other depen‐
dent services. This object has several more properties defined, and
you can review the specification for details.

Here are some additional things to keep in mind when implementing the Health
Check specification:

Health resource
Services should expose an “endpoint” that can be used to request a health status
document. The spec suggests (but does not require) that services use /health as
the URL for this.

Health link relation value
Although not mentioned in the specification document, I also use the health-
check link relation value to identify the URL that will return the health status
information.

Health media type
When returning the health status information, services should use the applica
tion/health+json media type identifier and return a valid (based on the specifi‐
cation) health status document.

Caching
Services should include an HTTP caching directive with the response (max-age,
ETag, etc.) to reduce the impact of frequent requests (and avoid a denial of ser‐
vice attack vector). Of course, clients should honor the caching directives, too.

See the examples for details.

It is a good idea to support a link on the “Home” resource of your service interface
that points to the health resource (see Figure 5-6).

For details on the health Health Checks resource, check out the
online collection of ALPS documents associated with this book.

212 | Chapter 5: Hypermedia Services

https://oreil.ly/RKhJ8

Figure 5-6. Service health recipe

Example
A typical application/health+json response looks like this:

HTTP/1.1 200 OK
Content-Type: application/health+json
Cache-Control: max-age=3600
ETag: "w\i8u7y6t5r4e3w2"
...

{
 "status": "pass",
 "version": "1",
 "releaseId": "1.2.2",
 "notes": [""],
 "output": "",
 "serviceId": "f03e522f-1f44-4062-9b55-9587f91c9c41",
 "description": "health of authz service",
 "checks": {
 "cassandra:responseTime": [
 {
 "componentId": "dfd6cf2b-1b6e-4412-a0b8-f6f7797a60d2",
 "componentType": "datastore",
 "observedValue": 250,
 "observedUnit": "ms",
 "status": "pass",
 "affectedEndpoints" : [
 "/users/{userId}",
 "/customers/{customerId}/status",

5.11 Supporting Service Health Monitoring | 213

 "/shopping/{anything}"
],
 "time": "2018-01-17T03:36:48Z",
 "output": ""
 }
],
 ...
 }
}

Note the use of cache-control and ETag headers to instruct client applications to
retain local copies of the document to reduce traffic loads to the service.

Health check information in OPTIONS responses

You can “advertise” support for the health check pattern by including a link relation
value in responses. I do this for all my OPTIONS responses:

**** REQUEST ****
OPTIONS / HTTP/1.1
Accept: application/vnd.collection+json, application/html, application/json
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Link: <http://api.example.org/health>; rel="health-check"
...

Health check information in service-meta responses
I also include support for health checks in my service metadata document (see Recipe
5.10):

HTTP/1.1 200 OK
Content-Type: application/apis+json
...

{
 "name": "Example API",
 "type": "Index",
 "description": "This is an example APIs.json file.",
 "image": "https://api.example.org/logo.jpg",
 "tags": ["Application Programming Interface","API"],
 "created": "2014-04-07",
 "modified": "2020-09-03",
 "url": "http://example.com/apis.json",
 "specificationVersion": "0.14",
 "apis": [
 {
 "name": "Example API",
 "description": "This provides details about a specific API.",
 "humanURL": "http://example.com",

214 | Chapter 5: Hypermedia Services

 "baseURL": "http://api.example.com",
 "tags": ["API","Application Programming Interface"],
 "properties": [
 {"type": "Documentation","url": "https://example.com/documentation"},
 {"type": "OpenAPI","url": "http://example.com/openapi.json"}
 {"type": "Health","url": "http://example.com/health.json"}
],
 "contact": [{"FN": "APIs.json","email": "info@apisjson.org"}]
 }
],
 ...
}

Note that the “health” type in APIs.json is an extension value not included in the
APIs.json specification. See Recipe 5.10 for details.

Discussion
In most cases, health checks are helpful when they stick to the basics. Reporting pass,
fail, and warn is usually more than enough for service consumers. It is not a good
idea to try to use health checks as a debugging or diagnostic tool. The health check
reflects the state of the interface, not the service behind that interface.

This recipe is based on the draft-06 version of the “Health Check
Response Format for HTTP APIs” document. By the time you read
this book, there may be new drafts or the final approved RFC may
be published. Be sure to keep an eye on this specification document
to stay informed on changes.

Some readers might want to set up a “callback” health endpoint that allows others to
subscribe to regular responses from your service. This is not recommended. As the
number of users of your service grows, it is possible that you’ll get hundreds, possibly
thousands of callback requests to handle. This can easily overwhelm your service. For
that reason, stick to offering an HTTP GET endpoint that has a cache-control value
that reduces the impact of lots of health requests. It would be the ultimate irony that
health checks cause the service to be unable to meet your service-level agreements!

The specification points out that responses for health checks are “dynamic”; the con‐
tents of the response may be customized based on the calling context. For example,
anonymous requests might return only the status value (pass, fail, warn), but
authorized requests (e.g., admin users) might see detailed information on the status
of the service.

5.11 Supporting Service Health Monitoring | 215

The specification does not provide lots of details on extending the application/
health+json responses. If you want to include additional information, not covered
by the defined properties, be sure to do it in a backward-compatible manner, and
provide links to human-readable documentations explaining your extension.

See Also
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 3.9, “Designing for Reversible Actions”
• Recipe 5.12, “Standardizing Error Reporting”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”
• Recipe 7.17, “Supporting Local Undo or Rollback”

5.12 Standardizing Error Reporting
All service interfaces encounter errors. The challenge is handling them properly. The
first step is to report the initial error in a way that is consistent and usable for API
consuming applications. That’s what RFC 7807 does.

Problem
What is the best way for web-based services to report runtime errors? What informa‐
tion should be returned to the caller when errors occur? What is the best format for
returning that information? What can services do to make sure error reporting does
not result in unexpected halting or “crashing” of the API client application that expe‐
riences the error?

Solution
Error reporting is a critical part of implementing stable, usable service interfaces. It is
important to handle it in a way that, whenever possible, allows both the API provider
and consumer to resolve any errors and continue to function as designed. The key to
this is reporting errors in a standardized way: a way that API consumers will recog‐
nize (“oh, that’s an error”) and that gives them the opportunity to resolve the error.

An excellent way to report errors to API consumers is to use the “Problem Details”
media type defined in RFC 7807. When you use this media type for reporting errors,
clients are more likely to recognize the error and can be more prepared for resolving
the problem described in the message (see the example in this recipe).

216 | Chapter 5: Hypermedia Services

https://oreil.ly/4isUg
https://oreil.ly/4isUg

Errors Are Built In
In some cases, message formats have error reporting as part of the design. For exam‐
ple, the CollectionJSON format includes an error object. When the format accounts
for error reporting directly in the message, it is better to report errors within that for‐
mat instead of using an RFC 7807 message to report the same information.

The key to success is to treat errors as an “alternate response” instead of a failed
request. In other words, always include error reporting as a feature of your service
interface, not a failure condition.

Example
The Problem Details specification (RFC 7807) defines a small set of elements:

type

A URI reference (RFC 3986) that identifies the problem type

title

A short, human-readable summary of the problem type

status

The HTTP status code generated by the service (this is a number, not a string)

detail

A human-readable explanation specific to this occurrence of the problem

instance

A URI reference that identifies the specific occurrence of the problem (optional)

The specification defines a default value for type: "about:blank". If a URI appears in
the type property, the specification encourages this URI to point to a human-
readable message for that problem type.

Here’s a typical problem details message:

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json
Content-Language: en

{
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "status": 403
}

5.12 Standardizing Error Reporting | 217

It is possible to extend problem detail records using your own properties:

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json
Content-Language: en

{
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "status": 403,
 "balance": 30,
 "accounts": ["/account/12345", "/account/67890"]
}

Note that the URL in the type element should point to a document that defines the
use and meaning of the out-of-credit problem. This documentation should also
include definitions of the balance and accounts elements. In this way, the type prop‐
erty points to a semantic profile for this problem representation. See Recipe 5.7 for
details on semantic profiles.

The type, title, and status of the problem detail message are “fixed”—always the
same, no matter which API or service returns the message. However, the detail and
instance properties are specific to the current case. Here is an illustration:

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json
Content-Language: en

{
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 20, but that costs 50.",
 "instance": "/account/12345/msgs/q1w2e3",
 "status": 403,
 "balance": 20,
 "accounts": ["/account/r4er3w2", "/account/y6t5r4"]
}

Now compare this problem details response to the previous one. In both cases, the
type, title, and status values are the same. But the details, instance, balance,
and accounts values are different.

The RFC 7807 specification registers both application/problem+json and applica
tion/problem+xml media type identifiers. However, it does not supply any examples
for an XML version of the problem details message. The following response:

HTTP/1.1 403 Forbidden
Content-Type: application/problem+xml
Content-Language: en

218 | Chapter 5: Hypermedia Services

<problem-details>
 <type>https://example.com/probs/out-of-credit"</type>
 <title>You do not have enough credit.</title>
 <detail>Your current balance is 30, but that costs 50.</detail>
 <instance>/account/12345/msgs/abc</instance>
 <status>403</status>
<problem-details>

As of this writing, RFC 7807 is undergoing an update at the IETF
standards committee. While this update is expected to result in a
nonbreaking change, readers should keep a close eye on this speci‐
fication and be prepared for any changes that may occur in the
future.

Discussion
The specification makes a point to say that problem details messages should not be
used when a simple HTTP 4xx or 5xx status report would suffice. For example, if a
user attempts to update an existing record and does not have rights to do so, return‐
ing a 403 response to a PUT would likely suffice. However, if the user sent an invalid
body for a PUT message, it might be helpful to return a problem details response that
describes the problem and offers a way to fix the error before resubmitting.

Services should not use this format to return “debugging” information to the client
application. The format is meant to share details about the interface, not about the
underlying service behind the API.

When creating a new problem details type, you should document three things:

• A type URI (e.g., http://api.example.org/problems/insufficient-funds)
• A title (e.g., “Your account has insufficient funds for this transaction.”)
• A status code that is appropriate for this problem (e.g., 403)

Whenever possible, it is a good idea to limit the number of new problem details
types you define and create ones that are general enough to be reusable. You can also
customize the problem representations using the detail (text) and instance (URL)
elements of the message.

It is also possible to indicate the use of a Retry-After header with a problem details
response. This makes it possible to indicate retry details to API consumers when
needed.

5.12 Standardizing Error Reporting | 219

http://api.example.org/problems/insufficient-funds)

See Also
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 3.9, “Designing for Reversible Actions”
• Recipe 5.11, “Supporting Service Health Monitoring”
• Recipe 7.17, “Supporting Local Undo or Rollback”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”

5.13 Improving Service Discoverability with a Runtime
Service Registry
A key goal for all API interfaces is the ability to easily discover services you want to
use and consistently (re)use those services across a wide range of products and appli‐
cations. This recipe focuses on the work of making sure your provider service is dis‐
coverable and reusable at runtime (not design or build time) by registering with a
shared Runtime Service Registry (RSR).

Problem
What should service providers do to make sure their service is easily and consistently
registered with target RSRs? What internal functions should each service interface
support in order to be discovered? How can services report their runtime health sta‐
tistics to the RSRs? What service metadata should services supply to improve the
findability of the service for both machines and people?

Solution
Maintaining an RSR can improve the findability and reusability of running services
on the web. When a service is deployed on the web (and starts up), that service
should “publish” itself to one or more RSRs. This essentially tells the registry where
the service is running, what kind of functionality it has, and other supportive infor‐
mation, such as the media types (Recipe 3.1), shared vocabularies (Recipe 3.3), inter‐
face definitions (Recipe 5.9), and health status (Recipe 5.11). You can think of RSRs as
a kind of Domain Name System (DNS) for services—a reliable place to find and con‐
nect to other services.

This recipe is focused on supporting M2M runtime discovery and
use of an existing API. There are other options for supporting
human-driven design- or build-time discovery such as API portals,
catalogs, etc. This recipe (along with Recipe 5.10) can be adapted to
help support design- and build-time API discovery, too.

220 | Chapter 5: Hypermedia Services

https://oreil.ly/C69bp

For a service to be easily discovered and (re)used on the web at runtime, it should
support the following:

Register on startup
When the service is deployed, it should automatically self-register with one or
more RSRs. This makes sure other services can find it when it is needed.

Periodic health reports
On a regular basis (sometimes this interval is set by the RSR), the service should
“ping back” to the RSR (using a URL supplied at registration) to confirm that the
service is up and running. Optionally, it may report some usage statistics, like
how many times it has been called in the last reporting period, number of
reported errors (400/500), and response times.

Unregister on shutdown
When the service goes offline (via a controlled shutdown or fatal error), it should
automatically “unregister” with any associated RSRs. This ensures that other
services will not try to connect to it when it is not available.

Note that all three of these actions are internal to the service and
there is no need to expose this functionality as part of the usable
service API interface.

Example
Creating a service that supports RSRs means enabling your service to register at
startup, send health pings to the RSR, and unregister at shutdown. Here is a simple
example of registering with a preconfigured RSR at startup using a package called
discovery:

var srsResponse = null;
var srsRegister({Url:"...","name":"...",});

// register this service w/ defaults
discovery.register(srsRegister, function(data, response) {
 srsResponse = JSON.parse(data);
 initiateKeepAlive(srsResponse.href, srsResponse.milliseconds);
 http.createServer(uuidGenerator).listen(port);
 console.info('uuid-generator running on port '+port+'.');
});

5.13 Improving Service Discoverability with a Runtime Service Registry | 221

Upon registration, a collection of service metadata should be supplied to the RSR,
such as:

serviceURL

URL of the service you are registering

serviceName

Text name of the registered service

semanticProfile

Space-separated list of profile URIs (see Recipe 3.4)

mediaType

Space-separated list of mediaType identifiers (see Recipe 3.1)

apiDefintions

Collection of annotated links pointing to API definition documents (see Recipe
5.9)

tags

Space-separated list of searchable keywords (e.g., "gdpr banking loans")

While the service is up and running, it should periodically ping the RSR to confirm
that the service is still up and running. The example shows this using the initiate
KeepAlive(…) method. This method may also send additional health information (or
an href that points to that data; see Recipe 5.11 for more on this detail).

Whenever the service is taken offline, either in a controlled form or due to a fatal
error, it should be evicted from the RSR registry to prevent others from attempting to
use that missing instance (or cluster). Here’s a NodeJS example showing how to
unregister the service at shutdown:

// set up proper discovery shutdown
process.on('SIGTERM', function () {
 discovery.unregister(null, function(response) {
 try {
 uuidGenerator.close(function() {
 console.log('gracefully shutting down');
 process.exit(0);
 });
 } catch(e){}
 });
 setTimeout(function() {
 console.error('forcefully shutting down');
 process.exit(1);
 }, 10000);
});

Note the added setTimeout method to force the service shutdown, if needed.

222 | Chapter 5: Hypermedia Services

Since a fatal service crash might preempt sending the discovery.unregister mes‐
sage, an RSR usually has a maximum amount of time that it will wait for a pingback.
If the wait exceeds the maximum value, the RSR will most likely delete the registra‐
tion entry or set its status to “down” (or some other value).

Discussion
Each service instance or cluster that is up and running should be listed in an RSR. For
example, if an instance of a netPresentValueCalculator service is running on a
machine in North America and another running on a machine in North Africa, that
would be represented by two entries in the RSR. Conversely, the same instance of a
service might be listed in multiple RSRs. For example, the instance might be regis‐
tered in a registry hosted in North America as well as one hosted in Australia.

Keep in mind that a single service (e.g., computeInterest) might have multiple ver‐
sions. If those versions are running as standalone instances, each should be listed in
the RSR. This allows API consumers to find the version they want to use.

The RSR quite likely will require an authenticated user in order to
register your service. This is especially true for RSRs that are avail‐
able on the web.

Services can use an RSR to locate and connect to internally dependent services, too.
For example, if your computeInterest service also relies upon the external taxTable
and federalRates services, your service can use an RSR to find and bind to the pre‐
ferred version of each of those external services, too.

When registering your service, it’s advantageous to provide as much metadata as pos‐
sible to improve your service’s “findability.” Be sure to include keywords in the tags
field as well as the serviceProfile, apiDefinitions, and supported mediaTypes.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.9, “Publishing Service Definition Documents”
• Recipe 7.6, “Supporting RESTful Job Control Language”

5.13 Improving Service Discoverability with a Runtime Service Registry | 223

5.14 Increasing Throughput with Client-Supplied
Identifiers
It is common practice to expect servers to generate and return identifiers for any
resources created by client applications. This simplifies the process of ensuring
unique resource URLs, but has drawbacks. This is especially true when multistep pro‐
cesses are involved (create A, get unique ID from A, use that to create B, etc.).

Problem
When is it better to allow clients to supply unique identifiers, and how can that be
done safely and consistently? What is the easiest, most reliable way to support API
consumer-supplied resource IDs?

Solution
A simple and reliable way to generate unique identifiers is to use date-time stamp
information or an output of a random number generator to create a string. Here’s an
example using a random number generator in JavaScript:

var id = parseInt(String(Math.random()).substring(2)).toString(36);
// id = "906lem09xu8"

You can also use date-time and/or random numbers to generate a Universally Unique
Identifier (UUID) (see the examples). There is a specification for creating UUIDs
(RFC 4122) that you can use as a guide to write a simple routine. Even better, there
are quite a few open source RFC 4122-compliant UUID generators for just about all
programming languages. Some programming platforms even offer a direct call for
generating UUIDs (e.g., NodeJS v17 supports a UUID function in the cryptoAPI
module).

Client-supplied identifiers can make it possible to reduce sequen‐
tial processing of multistep workflows and replace them with paral‐
lel processing implementations (see the example).

Client applications should be instructed to generate their own unique identifier and
either include that in the URL or supply it in the body of the HTTP POST, PUT, or
PATCH request sent to the service API. Service APIs can then inspect the value and
confirm it is unique before processing the request. If the value supplied by the client
is not unique, the service can return a 409 Conflict status code with additional
information on how clients can fix the problem.

224 | Chapter 5: Hypermedia Services

https://oreil.ly/oHXrO
https://oreil.ly/oHXrO

Example
A very simple way to generate a unique identifier is to rely on your programming lan‐
guage’s random number generator. Here’s a sample implementation in JavaScript:

// generating unique identifiers
function makeId() {
 var rtn;

 rtn = String(Math.random());
 rtn = rtn.substring(2);
 rtn = parseInt(rtn).toString(36);

 return rtn;
}

Calling the makeId() function will generate compact identifier strings that look like
this: "1oyte4x0zep".

Some random number generators are not quite as “random” as most of us would like.
For that reason, you can mix a date-time value with a random number and generate
an RFC 4122-compliant UUID value. Here is an example function that does the trick:

// generating UUIDs (Public Domain/MIT)
function generateUUID() {
 var d = new Date().getTime();
 var d2 = ((typeof performance !== 'undefined') &&
 performance.now && (performance.now()*1000)) || 0;
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
 var r = Math.random() * 16;
 if(d > 0){
 r = (d + r)%16 | 0;
 d = Math.floor(d/16);
 } else {
 r = (d2 + r)%16 | 0;
 d2 = Math.floor(d2/16);
 }
 return (c === 'x' ? r : (r & 0x3 | 0x8)).toString(16);
 });
}

The output of UUID functions is much less likely to result in a collision, but the
resulting output (e.g., "e6db8698-7128-478d-8658-12c2cb9dd126") is longer than
the simple example shown earlier.

The unique values can also be shipped from the client application as part of the mes‐
sage body for HTTP POST operations:

<p>Create a New Person</p>
<form name="create" action="/persons/" method="post">
 <input type="hidden" name="unique-id" value="1oyte4x0zep" />
 <input type="text" name="name" value="Mark Morkleson" />

5.14 Increasing Throughput with Client-Supplied Identifiers | 225

 <input type="submit" />
</submit>

Or as part of the URL for HTTP PUT operations:

<p>Create a New Person</p>
<form name="create" action="/persons/1oyte4x0zep" method="put">
 <input type="text" name="name" value="Mork Markleson" />
 <input type="submit" />
</submit>

See Recipe 5.15 for more on using HTTP PUT to create new
resources.

It is up to the server-side component to confirm that the client-supplied unique iden‐
tifier is acceptable. For example, does this identifier (and a related resource) already
exist? Is the identifier properly formatted (e.g., a proper length string with appropri‐
ate characters, etc.)? If, for any reason, the client-supplied identifier is not acceptable,
the service interface should reject the write operation with an HTTP status of 409
Conflict.

Discussion
Some client application developers will balk at the idea of supplying their own unique
values. You can ease their worries by supplying a code library that generates unique
identifiers and encouraging client application developers to use them as they would
an SDK (software development kit).

An optional approach to requiring client-supplied identifiers is to provide a fallback
approach in the service interface that will generate the identifier if it is not provided
by the client. A simple “if-test” can be used:

function addItem(id, body) {
 var item;

 if (id) {
 item.id = id;
 } else {
 item.id = makeId();
 }
 ...
}

This is especially handy if the API is just a thin proxy for an existing backend service.

226 | Chapter 5: Hypermedia Services

One of the advantages of relying on client-supplied identifiers is that it can help
reduce the need for sequential workflow processing. For example, consider the case
where three resources need to be updated: customer, account, and salesRecord.
Also assume that the account record needs to have the customer identifier as a prop‐
erty, and that the salesRecord needs to have both the customer and account identifi‐
ers as properties. In this scenario, if the services are supplying the identifiers, your
workflow might look like this:

writeCustomer()
 .then(function(customerResponse) {
 return writeAccount(accountResponse);
}).then(function(nextResponse) {
 return writeSalesRecord(salesRecordResponse);
}).then(function(finalResponse) {
 console.log('Final response: ' + finalResponse);
}).catch(failureCallback);

Essentially, each step must wait on the previous step to complete before continuing.
However, if you rely on client-supplied identifiers, you might be able to do this:

var cId = makeId();
var aId = makeId();
var sId = makeId();
Promise.all([
 writeCustomer(cId),
 writeAccount(cId,aId),
 writeSalesRecord(cId,aId,sId)
])
.then(() => console.log('All done!'))
.catch(function(err) {
 rollbackAll(cId,aId,sId);
 console.log('Write failed!');
});

A side effect of the client-supplied identifier recipe is that the resource identifiers are
not sequential and are rarely easy for people to read or remember. This lack of
sequence can make it harder for malicious coders to guess your resource identifiers. It
can also make it harder for legitimate developers to navigate a collection of records.
You can mitigate this second problem by allowing clients to supply “friendly IDs” that
can be displayed in lists and other output while the generated identifier is hidden in
the user interface:

 <li id="q1w2e3r4">Sally-R
 <li id="p0o9i8u7">Jane-Q
 <li id="6y5t4r3e">Barb-Z

5.14 Increasing Throughput with Client-Supplied Identifiers | 227

See Also
• Recipe 3.6, “Designing Consistent Data Writes with Idempotent Actions”
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 3.9, “Designing for Reversible Actions”
• Recipe 5.15, “Improving Reliability with Idempotent Create”
• Recipe 6.2, “Making All Changes Idempotent”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”

5.15 Improving Reliability with Idempotent Create
While the common practice is to use HTTP POST to create new resources in web
APIs, it is not the most reliable. In fact, when it comes to M2M interactions (e.g., no
humans in the loop), using HTTP POST can be problematic because of the possibility
of the lost response problem. What is needed is a solution to creating resources that is
repeatable and reliable, even when the network connections may be faulty.

Problem
When using HTTP POST to create new resources, it is possible to experience the lost
response problem. For example, an API client sends a POST that transfers $500 from
account A to account B, and that API client never receives an HTTP response. No
200 OK, no 400 Bad Request, no 500 Server Error—nothing.

Now what is the client to do? Did the request ever make it to the server? Was there a
server-side error that rejected the request? What if the request made it to the server
and was completed, but the 200 OK response got dropped on the network? In that last
case, repeating the request might result in executing the transfer twice.

How can we avoid the bad effects of the lost response problem when writing data to
the service?

Solution
A lost response for HTTP POST actions is troublesome because the state of the server
resource is unclear. Was the server updated or not? To compound the problem, the
HTTP specification for POST does not define the method as idempotent. That means,
unlike HTTP PUT, an HTTP POST request cannot be “repeated automatically if a com‐
munication failure occurs before the client is able to read the server’s response.”

228 | Chapter 5: Hypermedia Services

https://oreil.ly/M2ZQg
https://oreil.ly/35Mmc

An important element of this recipe is the use of client-supplied
unique URLs. See Recipe 5.14 for more details.

The solution to this problem is to use PUT for any case where API clients want to
modify the resource on a service, whether the intent is to create a new record or to
update an existing record. Since HTTP PUT is an idempotent method, client applica‐
tions can confidently repeat requests that intend to modify data on the service
without the worry of “double-posting” resources by mistake.

There are other options for supporting idempotent updates while
still using HTTP POST. A recent example is “The Idempotency-Key
HTTP Header Field”. I continue to encourage implementing solu‐
tions along the lines of this recipe since they work well for existing
HTTP versions without the need for new headers or other exten‐
sions.

Client applications can also use the If-None-Match header to indicate they want to
create a new resource, or the If-Match header when the client intends to update an
existing resource.

In this way, client applications avoid the ill effects of the list response problem.

Example
The key to the lost response solution is to always support an idempotent HTTP
method (PUT) to write data to the server. When you want client applications to create
new resources, instruct them to use the PUT method, supply a complete URL, and
include the If-None-Match header with a value of "*".

Here is an example of using PUT for creating HTTP resources:

PUT /persons/q1w2e3r4
Host: api.example.org
Content-Type: application/json
Content-Length: XXX
If-None-Match : "*"

{"name":"Mark Morkelson"}

Upon receiving this request, the API service can check if there is already a resource at
the provided URL, and “if none match” the wildcard entity tag ("*"), the server can
create the resource and return the following response:

5.15 Improving Reliability with Idempotent Create | 229

https://oreil.ly/TTtQM
https://oreil.ly/TTtQM

201 Created
Location: http://api.example.org/persons/q1w2e3r4

If, however, a resource already exists at that URL, the server can return the following
response:

209 Conflict
Content-Type: text/plain

Unable to create. Resource already exists.

When client applications want to update existing resources, they need to supply that
resource’s unique entity tag (provided by the server) when sending the updating PUT
request. Here is a sample exchange:

**** REQUEST ****
GET /persons/q1w2e3r4
Accept: text/plain

**** RESPONSE ****
200 OK
Content-Type: application/vnd.collection+json
ETag: "w/p0o9i8u7y6yt5r4"

{"collection": {
 "items": [
 {"href" : "/persons/q1w2e3r4", "data" : [{"name" : "Mark Morkleson"}]}
],
 "template" : { "data" : [{"name" : "Mork Markleson"}] }
}}

**** REQUEST ****
PUT /persons/q1w2e3r4
If-Match: "w/p0o9i8u7y6yt5r4"
Content-Type: application/x-www-form-urlencoded
Accept: application/vnd.collection+json

name=Mork%20Markleson

**** RESPONSE ****
200 OK
Content-Type: application/vnd.collection+json
ETag: "w/i8u7y6t5r4e3"

{"collection": {
 "items": [
 {"href" : "/persons/q1w2e3r4", "data" : [{"name" : "Mork Markleson"}]}
]
}}

Note that, for the update scenario, the If-Match header is sent with the value of the
existing resource’s ETag header. The server, upon seeing the PUT request, can use the

230 | Chapter 5: Hypermedia Services

value of the If-Match header to confirm the resource exists—and that it was not
altered by some other update process (which would result in a new entity tag value).
If the update fails (e.g., no existing resource or entity tag mismatch), the server can
return a 409 Conflict response.

Discussion
Supplying a complete URL when creating records may look a bit strange to some API
designers. But this is typically the way most HTTP client applications implement file
uploads (images, PDF documents, etc.).

This recipe relies on client applications interacting with HTTP headers (ETag, If-
None-Match, and If+Match). This might be a challenge for some API consumers (e.g.,
browsers limited to HTML FORMS). You can still make this work by supplying the
entity tag related information as hidden fields in server-supplied forms. Technically,
you could even use HTTP POST for this recipe, too. The HTML browser implementa‐
tion would look like this:

<p>Create a New Person</p>
<form name="create" action="/persons/q1w2e3r4" method="post">
 <input type="hidden" name="if-none-match" value="*" />
 <input type="text" name="name" value="Mark Morkleson" />
 <input type="submit" />
</submit>

<p>Update an Existing Person</p>
<form name="update" action="/persons/q1w2e3r4" method="post">
 <input type="hidden" name="if-match" value="w/p0o9i8u7y6yt5r4" />
 <input type="text" name="name" value="Mork Markleson" />
 <input type="submit" />
</submit>

While this will work for HTTP POST, I still encourage you to implement servers to
use HTTP PUT instead, since PUT is defined as idempotent (reliably repeatable) and
this use of POST is only “treating” the interaction as repeatable by convention.

By sticking to idempotent methods for all write operations, services can also provide
support for automatic retries for updates. Most HTTP libraries support automatic
retries for HTTP GET, but I have yet to find one that does this for PUT or DELETE, too.
See Recipe 5.16 for more on this option.

See Also
• Recipe 3.6, “Designing Consistent Data Writes with Idempotent Actions”
• Recipe 5.14, “Increasing Throughput with Client-Supplied Identifiers”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”

5.15 Improving Reliability with Idempotent Create | 231

• Recipe 6.2, “Making All Changes Idempotent”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”

5.16 Providing Runtime Fallbacks for Dependent Services
In cases where a service calls out another service, that first service is dependent on the
second service. Since these service calls rely on the network, a long list of problems
may arise. While the chances that a single dependent service call may fail might be
small, if your service depends on several external services, your likelihood of failure
grows—exponentially. When implementing service APIs, you need to account for this
failure possibility and mitigate any problems.

Problem
In cases where a service depends upon another external service, how can you reduce
the risk of failure? What patterns can you use to limit the possibility of these kinds of
“fatal dependencies,” and how can you work around them at runtime when they hap‐
pen? How can we make sure to maintain service reliability both in the case of reading
data from a dependent service and writing data to those services?

Solution
There will be cases when an API is actually an interface that aggregates other APIs.
For example, a shopping API might be implemented as a mix of three other APIs: a
shopping-cart API, a payment API, and a delivery API. The danger is that one or
more of these dependent APIs is unreachable at runtime due to network or local ser‐
vice problems. What’s needed is a well-defined “backup plan” or fallback option for
each of the dependent APIs.

It is important to keep in mind that your solutions need to take
into account both the “read-from” and “write-to” scenarios.

Protecting your service interface from the failures of the network, or the failures of
other services upon which you depend, can be mitigated through a handful of
methods:

Automatic retries
One option is to assume the failure is temporary, and that a short pause and retry
will solve the problem. Most HTTP libraries have this auto-retry feature for
HTTP GET requests built in, but few HTTP modules support auto-retry for

232 | Chapter 5: Hypermedia Services

unsafe actions (e.g., PUT and DELETE). However, modifying your own code to
handle this is not too difficult.

Static fallback options
Just as you can configure (or hardcode) the initial API dependencies (for exam‐
ple, var shoppingAPI = "http://shopping.example.com/home"), you can
expand the configuration to include a second, “fallback,” location for the same
service (var shoppingAPIFallback = "http://other-shopping.example.com/
home"). Then, when the initial location fails to respond, you can update the run‐
time code to point to the alternate service. This has some implications for state
management—see Recipe 3.7 for details.

Dynamic fallback options
You can also write your API aggregator to be able to enlist a service registry to
find another available alternative for your needed functionality. This is, essen‐
tially, a runtime service lookup similar to the runtime DNS that locates machines.
Check out Recipe 5.13 for more details.

Queuing requests for later replay
If you can’t gain a connection to either your initial service or an expected replace‐
ment service, you may be able to simply “hold on to” the request in a queue and
replay it later, when the currently failing service is once again available. This
requires setting up and managing a local queue and some code to process that
queue’s content. Typically, the initial response in this case is an HTTP 202
Accepted with a response body that describes details on how the API consumer
can monitor the handling of the delayed request (see Recipe 7.15). Of course,
you’ll need to include this possibility in your documented interface design so that
API consumers can be prepared for this kind of response.

Give up
The final option is to just stop processing requests, tell the API consumer that is
calling your API that you are “unable to process the request at this time,” and
return an HTTP 500 error. This is the safest and the least functional option. In
this case, if possible, you should return a response body that indicates some esti‐
mated wait time before the API consumer can try this request again. Keep in
mind that your 500 Internal Service Error might trigger the API consumer
to kick in its own mitigation code, which might also affect that API consumer
application’s consumers, and so forth.

If the dependent service is used primarily as a simple data source
(e.g., list of postal codes, countries, states/regions, product num‐
bers, etc.), you may be able to use some of the data caching recipes
covered in Chapter 6.

5.16 Providing Runtime Fallbacks for Dependent Services | 233

Basically, you want to implement your API to assume failure on the part of other ele‐
ments of the system you are dependent upon and incorporate at least one of the pre‐
ceding mitigating solutions for each possible failure point. Ultimately, you cannot
prevent the failures, but you may be able to mitigate its effects. To quote John Gall:
“Any large system is going to be operating most of the time in failure mode.”

What About the Circuit-Breaker Pattern?
You might have expected to see some other solutions in this recipe such as the Circuit
Breaker. Since this book is focused primarily on the M2M interaction level, I’ve left
out many of the established code-centric solutions like the Circuit Breaker and others.
See the preface for some books that I highly recommend as guides for coding micro‐
services, including Circuit Breaker and other patterns.

Example
This recipe outlines several possible solutions. Up next are examples of each.

Automatic retries
You can arrange your API calling code to automatically retry requests. The key ele‐
ments to manage are:

• The type of request failure (e.g., HTTP 502 is returned)
• The type of request that was made (e.g., GET, PUT, DELETE)
• The time to wait before trying again (e.g., 250 ms wait before retry)
• The number of times to retry before giving up (e.g., retry three times)

For example, internal API code might look like this:

var reqParams = {} // request params
reqParam.host = "https:/api.example.com"
reqParams.url = "/users/q1w2e3";
reqParams.body = "mork=mamund&name=Mike Morkelsen";
reqParams.method = "PUT";
reqParams.waitMS = 300;
reqParams.retryAttempts = 3;
reqParams.successFunction = requestSucceeded;
reqParams.failFunction = requestFailed;

httpLib.request(reqParams);

After this fails, you may wish to repeat the attempt (with a modified wait period
value) or you can attempt one of the other mitigations in this recipe (static fallback,
dynamic fallback, queuing requests, or give up).

234 | Chapter 5: Hypermedia Services

https://oreil.ly/fBrWj
https://oreil.ly/VjvV8
https://oreil.ly/VjvV8

Static fallback
You can update your request functionality to include attempts to call an alternate host
by including the alternate location in your request collection and adding code to your
request method to switch hosts and make additional request attempts:

var reqParams = {} // request params
reqParams.host = "https:/api.example.com"
reqParams.url = "/users/q1w2e3";
reqParams.body = "mork=mamund&name=Mike Morkelsen";
reqParams.method = "PUT";
reqParams.waitMS = 300;
reqParams.retryAttempts = 3;
reqParams.successFunction = requestSucceeded;
reqParams.failFunction = requestFailed;
reqParams.alternateHost = "https://alternate-api.example.com";

httpLib.request(reqParams);

After that fails, you can try the other options.

Dynamic fallback
This one is a bit trickier since you don’t have a fixed alternate host but need to go
“find” one instead. See Recipe 5.16 for details on how to implement dynamic
fallbacks.

Queuing requests
If retries and fallbacks fail, you can offer to queue the request and try it again later.
This can be added as an option in your local request implementation:

var reqParams = {} // request params
reqParams.host = "https:/api.example.com"
reqParams.url = "/users/q1w2e3";
reqParams.body = "mork=mamund&name=Mike Morkelsen";
reqParams.method = "PUT";
reqParams.waitMS = 300;
reqParams.retryAttempts = 3;
reqParams.successFunction = requestSucceeded;
reqParams.failFunction = requestFailed;
reqParams.queuingFunction = queueRequest;
reqParams.alternateHost = "https://alternate-api.example.com";

httpLib.request(reqParams);

When you do this, you will need to return an HTTP 202 Accepted response to the
API consumer along with a body that includes additional information. See Recipe
7.15 for details.

5.16 Providing Runtime Fallbacks for Dependent Services | 235

Give up
At some point you’ll need to admit failure and just stop trying to complete the
request. In this case, you should return the appropriate response (an HTTP 5xx
error) along with a response body that indicates the inability to complete the request.
Since this request might be one of a series of API requests made by the API con‐
sumer, you should include any information that might be needed by the consumer to
support additional rollbacks of other requests in the series. See Recipe 7.16 for details.

Discussion
The good news is that the first few options listed (automatic retires, static fallbacks,
and dynamic fallbacks) can all be implemented without coordination with the API
client. They’re “hidden” implementation details.

Conversely, the queuing requests option requires substantial coordination with API
clients since it not only requires the client be prepared for the 202 Accepted

response, it may need to tell other services about this queuing issue. Consider the
case where our service handles payment processing and some dependent service is
unavailable. Returning 202 Accepted to the API caller might create a mess on their
end. Maybe they have already committed to decrementing inventory and scheduling
a delivery of purchased goods. They will now need to decide if they should “unroll”
those other activities, leave them in place, and not tell the calling API about it, or
offer the calling API an option to wait or cancel the activities.

Don’t attempt retries on nonidemptotent HTTP methods like POST
or PATCH. Instead only support these mitigations for GET, HEAD, PUT,
and DELETE. In rare cases, HTTP POST operations can be inter‐
preted as failures even when they are completed successfully; for
example, when the target service’s 201 Created response never
makes it back to the API consumer that made the call. See Recipe
5.15 for more on this scenario. In the case of PUT, the consequence
of this “false failure” is much less likely to result in corrupted or
duplicate data on the target service.

With the exception of the give up option, all the mitigations mentioned here involve
some additional processing on the part of the API implementation. These added fea‐
tures (retries, fallbacks, queuing) will all need to be implemented locally to provide
any benefit.

Don’t make the mistake of implementing these mitigations as shared external services
that get called by your API. This turns them into (possibly fatal) dependencies, too! If
your API code can’t reach other underlying services to do its work, it might not be
able to reach your external mitigation services, either.

236 | Chapter 5: Hypermedia Services

While the most common case is to use one of these mitigations for any HTTP 5xx
level response, you might want to limit when you reset to these mitigations. For
example, HTTP 408 Request Timeout is a good candidate for these solutions.

There may be new 5xx-level HTTP responses added in the future, and it may not be a
good idea to engage in these mitigations for just any 5xx response. The ones I recom‐
mend as good candidates for retries, fallbacks, and queuing are: HTTP 500, 502, 503,
and 504. Other 5xx values might be better handled by just returning the give up
option right away.

These options do not require the agreement of the underlying (failing) service. For
example, your service interface can implement retries, fallbacks, or queuing mitiga‐
tions without involving the service that has failed to respond in a timely manner.

When implementing the retry option, you should check the documentation of the
target service (the one you plan to send retries) to make sure you don’t program your
interface code to trigger a denial of service response. Be sure not to abuse the under‐
lying services by sending retries too often or too quickly.

It is a good idea to keep a running history of all requests processed
by your service. This is especially true in cases (like those covered
in this recipe) where your service is doing additional work to store,
forward, and process API consumer requests.

When implementing the fallback options, you may need to provide additional
request/response management if you plan to keep track of the activities (e.g., keep a
history of past actions for the API consumer). By setting up the use of other services
as a fallback, you are making the processing target a variable—not all requests may
have been processed by the same service. If this detail matters, you will need to
arrange for your service interface to keep track of—and possibly offer additional
request tracking and management options for—these requests.

See Also
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.9, “Improving Performance with Caching Directives”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”
• Recipe 7.17, “Supporting Local Undo or Rollback”

5.16 Providing Runtime Fallbacks for Dependent Services | 237

5.17 Using Semantic Proxies to Access
Noncompliant Services
At the heart of the recipes in this book is the notion of supporting resilient API cli‐
ents by using hypermedia-based service interfaces. But there are times when the serv‐
ices we need to expose to the network do not implement hypermedia interactions
(e.g., an FTP upload service). In some cases, we don’t have the ability to change those
services since they are operated by a third party outside our own IT ecosystem.

Problem
How can we safely expose noncompliant services in our RESTful web microservices
ecosystem? When is it a good choice to create a local proxy service that wraps other,
possibly remote third-party services? What does it take to create stable, reliable prox‐
ies for services we did not design and do not maintain?

Solution
There are times when we need the functionality of an existing service, but the service
design was not meant to support adaptable, evolvable interfaces in a RESTful ecosys‐
tem. In these cases, we need to create local, compliant service proxies that act as
“translation” devices between those noncompliant services and the rest of our service
ecosystem.

Typically, we need to design the desired service interface and then work up our own
local code within the API “wrapper” that translates RESTful requests into ones that
are supported by the noncompliant services. These proxies also need to translate any
responses from the noncompliant services into RESTful resource representations.

Sometimes the only challenge for an existing service is that it doesn’t operate with the
preferred semantic vocabulary or it doesn’t support the desired media types for mes‐
sage exchange. In these cases, it isn’t too much work to introduce a kind of “semantic
translation” proxy that hides the noncompliant service from API consumers.

The proxy solution makes sense when you need to expose functionality that is
“trapped” within noncompliant (see “Shared Principles for Scalable Services on the
Web” on page 16) services and it is not possible (or viable) to modify those services to
bring them into line with RESTful web microservices principles.

There are three types of service proxies we’ll discuss in this recipe: the enterprise-level
proxy (ELP), the custom one-off proxy (COP), and the semantic profile proxy (SPP).

238 | Chapter 5: Hypermedia Services

Enterprise-level proxy
In some cases, you might be able to create an ELP that algorithmically translates
between the noncompliant and compliant services. A good example of an ELP is
IBM’s CICS External Call Interface (EXCI). This solution works well when your orga‐
nization has invested a great deal of effort in developing a domain-specific service
platform (e.g., an accounting system) that was never implemented as a RESTful set of
services.

The ELP approach works well when you need to translate an established collection of
related services (or a single monolith offering a wide range of functionality from a
single source).

Custom one-off proxy
A more incremental approach is to create COP to translate existing functionality into
an RWA-compliant interface. For example, you might want to add a RESTful interface
to an existing FTP file upload service. The COP approach limits the effort needed to
solve a compliance problem and can also be easier to modify and scale as you go
along.

Use the COP approach when you have a heterogeneous mix of services you need to
bring into compliance or when you anticipate a small set of services needing this kind
of attention.

Semantic profile proxy
Sometimes the only barrier to interoperability for an external service is its inability to
“speak” in a language the other parts of your system understand. For example, you
might be dependent on services that only exchange messages in text/csv instead of a
hypermedia format like SIREN or Collection+JSON. Or the responses may not be
expressed in your organization’s preferred vocabulary (e.g., FHIR for health data or
BIAN for banking information). In these cases, you might be able to set up an SPP to
“normalize” the data exchanges.

SPP implementations can be as simple as converting XML to SIREN or as complex as
adding hypermedia forms to a set of exchanges originally designed to only support
CSV files. For this reason, it is sometimes difficult to estimate the level of effort
needed to design and implement an SPP solution. You might be able to use an ELP-
like approach to establish standardized transformations for messages. For example,
you might be able to write an XLST transformation proxy that converts between Col‐
lection+JSON and XML.

No matter which approach you are using (SPP, COP, or ELP), all service proxies need
to deal with the following elements:

5.17 Using Semantic Proxies to Access Noncompliant Services | 239

https://oreil.ly/OG0ph

• Create a semantic profile that delineates the domain in use (Recipe 5.7)
• Publish an API definition document outlining the functionality of your proxy

(Recipe 5.9)
• Write code that implements all the external actions using the underlying services,

internal functions (Recipe 5.4)

Essentially, writing a service proxy is the work of designing, defining, and implement‐
ing a new service interface. The key difference here is that there is already a working
service that relies upon another, noncompliant implementation.

Example
Each proxy model (ELP, COP, and SPP) requires a slightly different implementation
approach.

COP example
This is an example of a COP implementing a RESTful proxy for an FTP file upload
service. The following is the underlying service interface we need to “cover,” along
with a RESTful interface implementation:

// HTTP upload external action
function httpUpload(file) {
 var uploader = new httpService();
 var file = uploader.read();
 return file;
}

// FTP client service
function ftpUpload(file) {
 var client = new ftpService();
 var results = client.put(file);
 return results;
}

// proxy function for file uploads
function proxyUpload(file) {
 var results = null;;
 var file = httpUpload(file);
 if(file) {
 results = ftpUpload(file)
 }
 return results;
}

240 | Chapter 5: Hypermedia Services

Here’s a RESTful interface for uploading files (in HTML):

**** REQUEST ****
GET /upload-file/ HTTP/1.1
Accept: text/html
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: text/html
....

<form method="post" action="https://api.example.org/uploads/"
 enctype="multipart/form-data" >
 <input type="file" name=file" value="daily-batch.txt" />
 <input type="submit" value="Upload" />
</form>

**** REQUEST ****
POST /uploads/ HTTP/1.1
Accept: text/html
...

Content-Disposition: form-data; name="file";
...

**** RESPONSE
HTTP/1.1 200 OK
Content-Type: text/html
....

<p>File has been uploaded</p>

ELP example
In the case of a enterprise-level proxy (ELP), you can approach this as a translation
gateway similar to the one used for the Wireless Application Protocol (WAP) example
cited earlier in this recipe. Other examples of algorithmic proxies are ones that con‐
vert XML-based messages to JSON-based formats, natural language translators
(English to Spanish, etc.), and even protocol translators like the preceding
FTP<→HTTP proxy or the WAP<→HTTP example referred to earlier.

SPP example
Simple SPPs (e.g., format translators) are usually easy to implement as long as the
responses from the underlying service are consistent and the level of customization
for output formats is not too high. For example, you might have an XSLT implemen‐
tation that consistently converts XML to Collection+JSON:

results = convert(xmlDocument, xsltCollectionJSON);

5.17 Using Semantic Proxies to Access Noncompliant Services | 241

However, you might need to inject hypermedia controls in the responses, too. This
works well if the underlying service provides a status interface (e.g., a CRUD-style
model). In that case, you can simply code-in the standard Create-Read-Update-
Delete operations in the transformation script.

Finally, if you need to convert the vocabulary of the underlying service (e.g., first
Name → givenName, etc.), you’ll need to do more work. Usually, it is difficult to use a
transformation language with XSLT. Instead you may need to write additional con‐
version code that runs separately from any format translations.

Discussion
Implementing COP works when the functionality you want to expose is limited to
and/or focused on a small set of static operations. ELPs should be reserved for large-
scale efforts to convert an existing investment into a more modern, accessible set of
external actions. I’ve worked on a handful of ELP-type projects and most of them
take quite a bit more effort than expected, and almost all of them have a limited life‐
time before some other technology supersedes them.

It is rare for service proxies to scale at speed. Most of the time, the work of translating
between the two interfaces is a fiddly business of string manipulation and protocol
hoping. For this reason, translation proxies should be limited to parts of the system
that do not require a high transaction volume or a low latency. Queue-based imple‐
mentations are usually a common target of service proxying.

Implementing an ELP is not something to take on unless you are
sure you have sufficient resources. Not just money, but also the
time it will take to complete the first release and maintain it going
forward.

When implementing an ELP translator, your semantic profile and API definition files
document the gateway-level semantics, not the domain-level semantics of the infor‐
mation that passes through the gateway. In this way, implementing an ELP is very
close to designing, defining, and implementing a new message protocol or an end-to-
end programming framework.

In general, protocol translation proxies (FTP<→HTTP, etc.) are relatively easy to
implement because application-level protocols are mature and stable specifications.
There are lots of “rabbit holes” when it comes to metadata (HTTP headers, dealing
with FTP status codes, etc.), but most of the time you can smooth these over with
generic responses.

Conversely, SPPs are often the most challenging proxies to successfully implement.
Often the poorly specified vocabularies, ambiguous meanings of terms, and long-

242 | Chapter 5: Hypermedia Services

standing organizational knowledge buried in local service implementations all con‐
spire to make building stable SPPs a daunting task. The smaller the vocabulary (e.g.,
the target domain), the more likely you are to succeed.

In my experience, there are two types of successful service proxies. The first is one
that works “just well enough” and just long enough until a better, more stable solution
comes along (e.g., a new product) to replace it; and the sooner the better. The other
successful proxy implementation is one that has been around for years, humming
along, and no one has any idea how it works. None of the original designers or pro‐
grammers are around anymore, and only a fool would ever attempt to modify any
part of that mysterious (but stable) proxy.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.9, “Publishing Service Definition Documents”
• Recipe 6.11, “Extending Remote Data Stores”

5.17 Using Semantic Proxies to Access Noncompliant Services | 243

CHAPTER 6

Distributed Data

First step in breaking the data centric habit, is to stop designing systems as a collection of
data services, and instead design for business capabilities.

—Irakli Nadareishvili, JPMorgan Chase

This chapter is devoted to recipes for data-centric service interfaces. Data-centric
interfaces need to follow all the same principles covered in Chapter 5 along with
some additional details that come from the responsibility of storing and managing
data. These details involve assuring data integrity, hiding internal data models and
implementation technology, and dealing with a wide range of possible network fail‐
ures without invalidating any existing data. This is especially important now that data
can easily travel around the world and come into contact with regulations such as
General Data Protection Regulation (GDPR) and others.

Not all services need to manage their own data, but most have some level of data sup‐
port responsibilities. The challenge of data-centric services is that they typically sup‐
port persistent data. Even when a service goes offline, the data must continue to exist
and/or be accessible by other services. In some cases the service interface has the task
of mixing locally managed data with data from other external services. This com‐
pounds the integrity and reliability problem since the target interface must now rely
on other data services to complete the request work. And, especially in the case of
writing data, the more services involved in an action, the more likely an error and the
more complicated it is to rectify any problems.

Supporting distributed data in a hypermedia environment (see Figure 6-1) means
representing data responses as messages and returning hypermedia controls to com‐
municate possible actions on that returned data. It also means presenting a common
information retrieval query language (IRQL) independent of any internal custom
data query technology, such as SQL, GraphQL, etc. Editing data on the network also
means supporting idempotency for all changes in order to improve the likelihood of

245

https://gdpr-info.eu

successful writes. Lastly, enabling distributed data on the web means you need to sup‐
port the ability to modify and extend backend data models without breaking the ser‐
vice interface.

Figure 6-1. Hypermedia data recipes

The Rule of Least Power
The recipes in this chapter were selected to highlight common challenges, identify
common principles, and generally offer advice on how to implement APIs that follow
Tim Berners-Lee’s “Rule of Least Power”: “[T]he less powerful the language, the more
you can do with the data stored in that language.”

Data services are hard; no doubt. The solutions here try to use the least powerful
“data languages” in order to support the most you can do with the stored data.

For additional background on designing and implementing data-
centric services, see “Supporting Distributed Data” on page 40.

246 | Chapter 6: Distributed Data

https://oreil.ly/o9L8r

6.1 Hiding Your Data Storage Internals
Data storage technology has changed dramatically over the decades. At the same
time, interface designers often need to create APIs that make it possible to interact
with data services written using technology and features clearly designed for local
access instead of distributed network support. A guiding principle in creating data-
centric services is to hide the technology behind the interface and to always present
APIs that “speak the language of the API consumer,” not the language of the data
storage technology.

Problem
What is the best way to ensure APIs for data-centric services don’t “leak” the underly‐
ing storage and query technology used by that service? How can we shield API con‐
sumers from changes in foundational data technology over time? When does it make
sense to expose the syntax of current storage tech, and when does it make sense to
adopt a more generic query, data management, and storage language for your service
interfaces?

Solution
As a rule, it is good idea to hide the data storage technology from your API consum‐
ers. They should not know whether you are using SQL-based tech, GraphQL, or sim‐
ple filed-based storage. Ideally, you should design your interfaces in a way that allows
you to change the underlying data storage without adversely affecting existing API
consumers. The best way to do this is to make sure the service interface focuses on
the “job to be done” (e.g., updateCustomer or findUnpaidInvoices) instead of rely‐
ing on “data-language” (e.g., writeToDB(customerObject) or queryData('invoices
where balance>0') in your external interface.

New Data Service, Anyone?
The exception to this rule comes up when you are designing and implementing a data
management service itself. If your goal is to create the next GraphQL clone or
improve on the technology of Apache Lucene, then you need to design and imple‐
ment your own data platform, including storage, query, and data management lan‐
guages. That’s a big job but certainly a worthy one. But designing a data engine is not
the same job as supporting data services for a user management interface.

When adding data functionality to your API, it is best to expose domain-specific
actions as your external interface and keep your chosen data technology hidden as
part of your API’s internal implementation details.

6.1 Hiding Your Data Storage Internals | 247

Example
Consider the case of a service that needs to support updating existing objects in a
handful of stored collections (e.g., customers, salesReps, products, etc.). Let’s also
assume that our internal service exposes a generic method (update(object)) where
the object is one of the ones mentioned previously.

For classic HTTP implementations, you can supply a FORM that supports modifying
existing records:

**** REQUEST ****
GET /customers/q1w2e3 HTTP/1.1
Accept: application/vnd.siren+json
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.siren+json
ETag: "w\p0o9i8u7"
...

 "class": ["customer"],
 "properties": {
 "id": "q1w2e3r4",
 "companyName": "BigCo, Inc.",
 ...
 },
 "actions": [
 "name": "update", "type": "application/x-www-form-urlencoded",
 "method": "PUT", "href": "http://api.example.org/customers/q1w2e3r4",
 "fields": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "companyName", "value": "BigCo, Inc.",
 ...
]
]
}

In this example, you don’t know what data technology is used to implement the
update—and that’s the way it should be. For example, on first release, the data tech
might have been an SQLite database. But now the data storage is implemented using
GraphQL. The good news is this change in data platforms could be implemented
without adversely affecting the clients using the API.

Exposing data writes (create, update, delete) are pretty easy to do without leaking the
underlying technology. But it is a bit more challenging when it comes to safely expos‐
ing queries as external actions. Too often it is too easy to slip into just exposing a
generic query engine in your service interface. That makes the initial release faster
but opens you up to challenges when the underlying tech changes or the underlying
table/relationship layout changes. Plus, the data provider perspective is not always the

248 | Chapter 6: Distributed Data

same as the data consumer perspective. It is always better to put the consumer’s needs
above the provider’s.

Exposing the underlying query language is a bad idea. Soon you’ll be spending time
managing the query language instead of managing the problem domain defined by
the service interface. Whenever possible, it is a better idea to expose simple links (and
possibly forms) that describe the query. This follows the “Rule of Least Power” men‐
tioned at the start of this chapter.

For example, let’s assume a case where your service interface needs to support finding
all customers with outstanding balances more than 30 days, 60 days, and 90 days past
due. Here is an example implementation:

**** REQUEST ****
GET / HTTP/1.1
Host: api.customers.org
Accept: application/vnd.collection+json
...

{"collection": {
 "title": "Customers",
 "links" : [...]
 "items" : [...]
 "queries" : [
 {"name": "unpaid30", "href": "..."},
 {"name": "unpaid60", "href": "..."},
 {"name": "unpaid90", "href": "..."}
]
}}

Notice that there is no indication of the data storage or query technology in the ser‐
vice interface. Another possible, slightly more involved, solution would be:

**** REQUEST ****
GET / HTTP/1.1
Host: api.customers.org
Accept: application/vnd.collection+json
...

{"collection": {
 "title": "Customers",
 "links" : [...]
 "items" : [...]
 "queries" : [
 {"name": "unpaid", "href": "..."
 "data" : [
 {"name": "days", "value": "30", "required": "true"}
]
 }
]
}}

6.1 Hiding Your Data Storage Internals | 249

Adding required parameters to your API means that changing it in
the future will be more difficult. If the underlying service changes
from using days as a query value to months, your interface will
need to be modified to 1) continue to support days and do a local
conversion or 2) introduce a backward-incompatible breaking
change. Whenever possible, avoid required parameters.

The required parameter could be made optional if the interface also offered the
promise to supply a default value (e.g., "30") if no value was passed in the query. This
would simplify the query interface, but add more to the implementation.

Discussion
Hiding data tech for writes is usually not a problem. Using HTTP to pass a message
(e.g., customer, product, etc.) with an HTTP method is all you need to support it. See
Recipe 6.2 for more on data writes.

Hiding data tech for queries can be a challenge. It is easy to end up exposing whatever
query technologies are used by the service itself. This is especially true if the API is
the only layer between the API consumer and the data storage itself. Consider the
folly of the following data-centric API code:

function sqlExecute(connectionString, sqlStatement) {
 var sql = sqlConnection(connectionString);
 var results = sql.query(sqlStatement);
 return results;
}

And now here’s the (terrible) HTTP interface to match:

POST /data/ HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json
Content-Type: application/x-www-form-urlencoded
...

sqlConnection=user=mork,pw=m04k,server=db1,database=products&
sqlStatement=select%20*%20from%20products

The apparent good news is that the interface designer gets a fully functional data-
centric interface without doing much work. The bad news is that what we have here is
a security and evolvability nightmare. Don’t do this!

There may be times when you want to implement an API that relies on an independ‐
ent query language like Lucene or some other IRQL. In those cases, exposing the
query language is much less of a risk. See Recipe 6.7 for more on how to safely imple‐
ment language-specific query support.

250 | Chapter 6: Distributed Data

See Also
• Recipe 3.2, “Ensuring Future Compatibility with Structured Media Types”
• Recipe 5.2, “Preventing Internal Model Leaks”
• Recipe 6.3, “Hiding Data Relationships for External Actions”
• Recipe 7.1, “Designing Workflow-Compliant Services”

6.2 Making All Changes Idempotent
One of the important responsibilities of data services and their interfaces is to ensure
data integrity. This can be a challenge when using HTTP over the web, especially
when the network is slow or unreliable. This recipe describes how you can improve
the reliability of your data writes over HTTP.

Problem
There are times when data writes over HTTP fail, either due to a faulty network or
inconsistency in the data to be written. What is the best way to improve the reliability
of data writes at a distance when using HTTP?

Solution
The simplest way to improve the reliability of data writes on the web is to limit write
actions to rely only on the HTTP PUT method. Do not use PATCH or POST to write data
over HTTP. The HTTP method PUT is idempotent—it was designed to return the
same results, even when repeated multiple times. Neither POST or PATCH have this
feature.

A PATCH Is Not a PATCH
The HTTP Method Registry entry for HTTP PATCH identifies the method as non-
idempotent. However, the full specification points out that “a PATCH request can be
issued in such a way to be idempotent.” Despite this observation, I continue to recom‐
mend using only PUT for data writes over HTTP, as I find implementing PATCH more
of a challenge than simply using PUT.

The HTTP PUT method was designed such that “the state of the target resource be
created or replaced with the state defined by the representation.” For this reason, I use
PUT when attempting to create new data records and when updating existing data
records.

6.2 Making All Changes Idempotent | 251

https://oreil.ly/K8MJD
https://oreil.ly/K8MJD
https://oreil.ly/8Ff8t
https://oreil.ly/qdr0A

For details on how to use HTTP PUT to create instead of using
HTTP POST, see Recipe 5.15.

Service interfaces should always make HTTP PUT actions conditional requests. To do
this, when HTTP PUT is used to create a new data resource, the If-None-Match: *
header should be sent. This ensures that the record will only be created if there is no
resource at the URL used in the request.

When using HTTP PUT to update an existing data resource, the API client should
send the If-Match: "…" header with the value set to the Etag header received when
reading the record to update. This will make sure that the PUT will only be completed
when the entity tags (ETag in the response and If-Match in the request) are the same.

While including the existing record’s entity tag values (or the * wildcard), you can
make sure the HTTP request only completes when the conditions are right. Using
entity tags in this way also makes it possible to resend the same request multiple
times without fear of overwriting an update from another API client. In the case of
using HTTP PUT for creating records, resending the record will not inadvertently
overwrite a new record. Finally, in cases where the API consumer gets an initial fail‐
ure (or a missing response entirely), that client can confidently resend the update
without worrying that it will overwrite someone else’s work.

Since HTTP PUT is idempotent, it can be safely repeated with confidence. This is
especially handy in M2M scenarios where humans would not be able to intercept and
sort out any failed request problems.

Example
The following are several examples of using HTTP PUT for creating and updating an
existing resource record.

Using HTTP PUT to create a new resource

Here is a quick example of using HTTP PUT to create a new data resource:

**** REQUEST ****
PUT /tasks/q1w2e3r4 HTTP/1.1
Host: api.example.org
Content-Type: application/x-www-form-urlencoded
If-None-Match: *
Accept: application/vnd.hal+json
...

id=q1w2e3r4&title=Meet%20with%Dr.%Bison

252 | Chapter 6: Distributed Data

**** RESPONSE ****
HTTP/1.1 201 Created
ETag: "w/p0o9i8u7"
Location: http://api.example.org/tasks/q1w2e3r4

**** REQUEST ****
GET /tasks/q1w2e3r4 HTTP/1.1
Host: api.example.org
ETag: "w/p0o9i8u7"
Accept: application/vnd.hal+json

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.hal+json
ETag: "w/p0o9i8u7"
....

{
 "_links": {...},
 "id": "q1w2e3r4",
 "title": "Meet with Dr. Bison",
 "dateCreated": "2022-09-21"
}

Using HTTP PUT to update an existing resource

Note that, in the first response (201 Created), the ETag was included. This provides
the API client application the proper value for the ETag used in the following GET
request.

Now let’s assume the API client wants to update that same task record:

**** REQUEST ****
PUT /tasks/q1w2e3r4 HTTP/1.1
Host: api.example.org
Content-Type: application/json
Accept: application/vnd.hal+json
ETag: "w\p0o9i8u7"
...

{ "id": "q1w2e3r4", "title": "Meet with Dr. Bison at 16:00"}

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.hal+json
ETag: "w\y6t5r4e3"
...

{
 "_links": {...},
 "id": "q1w2e3r4",
 "title": "Meet with Dr. Bison at 16:00",

6.2 Making All Changes Idempotent | 253

 "dateCreated": "2022-09-21"
}

Note the updated ETag value that was returned in the update response. This repre‐
sents the new edition of the task resource representation.

Entity tags (ETag headers) are unique for each representation of the
resource. For example, the ETag for a person resource returned as
an HTML document is not the same as the ETag for the same per
son returned as a JSON document.

Handling a failed HTTP PUT update
Finally, let’s look at a case where the API client application attempts to update the
resource again. But this time, the resource was updated by another client application
somewhere else. For that reason, the update will fail and needs to be repeated:

**** REQUEST ****
PUT /tasks/q1w2e3r4 HTTP/1.1
Host: api.example.org
Content-Type: application/json
Accept: application/vnd.hal+json
ETag: "w\p0o9i8u7"
...

{ "id": "q1w2e3r4", "title": "Meet with Dr. Bison at 16:30"}

**** RESPONSE ****
HTTP/1.1 412 Conflict
Content-Type: application/problem+json

{
 "type": "https://api.example.org/probs/lost-update",
 "title": "The resource has already been updated",
 "detail": "The title properties do not match",
 "instance": "http://api.example.org/tasks/q1w2e3r4",
}

When a 412 Conflict is returned, the API client application should immediately
make a GET request to retrieve the updated record:

**** REQUEST ****
GET /q1w2e3r4 HTTP/1.1
Host: api.example.org
Accept: application/vnd.hal+json
ETag: "w/o9i8u7y6"
...
{
 "_links": {...},
 "id": "q1w2e3r4",
 "title": "Meet with Dr. Bison at downtown office",

254 | Chapter 6: Distributed Data

 "dateCreated": "2022-09-21"
}

With the refreshed record in hand, the API client can now resubmit the update
request:

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.hal+json
ETag: "w/o9i8u7y6"
...

{
 "_links": {...},
 "id": "q1w2e3r4",
 "title": "Meet with Dr. Bison at the downtown office at 16:00",
 "dateCreated": "2022-09-21"
}

In this last example, the failed response was caused by a previous update from
another client application. This is often referred to as the “lost update problem”. Fix‐
ing this problem requires performing a GET request on the existing record and then
modifying that record before resending the PUT request.

Handling network failures
Another possible error condition is a network failure. In this case, either the update
never reaches the server or the server’s response never reaches the client. You can
think of this as the “lost response problem”. Fixing this problem is easier, if not more
reliable. The API client can simply resend the existing request in hopes that the server
is once again reachable. If the repeated attempts fail, the API client needs to log the
error and stop bothering the target server.

Discussion
Making all write actions idempotent (via HTTP PUT) doesn’t remove possible failures.
Instead, using HTTP PUT makes handling the error conditions encountered on the
web less complicated and more easily resolved.

Using PUT to create resource records means the client application needs to supply the
unique resource identifier (e.g., /tasks/{id}). A dependable way to do this is to
instruct the client to generate a UUID or use a high-precision date-time stamp as the

6.2 Making All Changes Idempotent | 255

https://www.w3.org/1999/04/Editing
https://blog.container-solutions.com/why-i-stopped-using-post

resource identifier. In both cases there is a lot of guidance on doing this safely and
effectively. See Recipe 5.15 for additional details.

Handling 410 Gone
It is possible that an API client will attempt to use HTTP PUT to update a record that
has already been removed by some other API consumer via an HTTP DELETE request.
In this case, the API client should have received a 410 Gone response and logged the
condition for later inspection.

Data service interfaces should always return entity tags (ETag) in responses. This
value is the best way for both API provider and consumers to ensure resource integ‐
rity when attempting any write requests. It is important that data-centric service
interfaces reject any attempt to modify resource state (via PUT, POST, PATCH, and
DELETE) that does not include an entity tag header (If-None-Match for create, and
If-Match for update and delete).

While I focus on If-None-Match and If-Match headers, the HTTP
specification also defines If-Modified-Since and If-Unmodified-
Since headers based on date-time stamps. I continue to recom‐
mend using the headers based on entity tags instead of date-
stamps, but both approaches are acceptable.

There will be times when an update fails and there is no simple machine-driven way
to resolve the problem. In this case, the API consumer application should write a log
record or send a text/email message indicating the failure and ask a human to deal
with the problem.

See Also
• Recipe 3.6, “Designing Consistent Data Writes with Idempotent Actions”
• Recipe 4.8, “Every Important Element Within a Response Needs an Identifier”
• Recipe 5.15, “Improving Reliability with Idempotent Create”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”

6.3 Hiding Data Relationships for External Actions
When following the principle of hiding data technology from the service interface, it
is also important to hide any data model relationships employed by that technology.
This recipe helps you keep the data relationships hidden from the API while still sup‐
porting those relationships at runtime.

256 | Chapter 6: Distributed Data

Problem
What’s the best design to hide any data model relationships (e.g., person as one or
more address records) from the service interface? Is there a way to support the back‐
end relationships without exposing the data model or data technology behind that
interface?

Solution
The safest approach to writing data that includes entity relationships in the underly‐
ing data model is to represent the data properties using a “flat view” of the associated
data. For example, in our person and address case, a single write operation would
contain all the fields needed for both entities. It would be up to either the API code or
the code in the service behind the API to split the single message into as many write
operations as needed.

It is also a helpful practice to include in the write response a pointer that allows the
client to add another related entity. For instance, the response from a successful write
of a new person and address entity might include a link or form to “Add another
address” in the stored model.

Example
Figure 6-2 is an example entity-relationship diagram showing how person records
and address records are related in the underlying data model of the person interface.

Figure 6-2. Person-address relationship

And here is the Collection+JSON template from the published API:

{"collection": {
 "title": "Persons",
 "links": [...],
 "items": [...],
 "template": {

6.3 Hiding Data Relationships for External Actions | 257

 "data": [
 {"name": "id", "value": "q1w2e3r4", "type": "person"},
 {"name": "givenName", "value": "Mork", "type": "person"},
 {"name": "familyName", "value": "Markelson", "type": "person"},
 {"name": "street", "value": "123 Main", "type": "address"},
 {"name": "city", "value": "Byteville", "type": "address"},
 {"name": "state", "value": "Maryland", "type": "address"},
 {"name": "postal_code", "value": "12345-6789", "type": "address"}
]
 }
}}

In this example, both the person and address data properties are included in a single
write message. A minor implementation detail has been added: the inclusion of the
type property that provides hints on how the data might be organized in data storage.
This is purely optional.

Behind the scenes, the API code might turn this into two write operations:

var message = http.request.body.toJSON();
var person = personFilter(message);
var adddress = addressFilter(message);
address.person_id = person.id;

Promise.all([writePerson(person), writeAddress(address)]).then(...);

In this case, the write operations of both the parent record (person) and related child
record (address) are sent in a single HTTP request allowing the API code to sort out
the details. The response to a successful write request can be a representation that
includes a link to continue to add more child records:

{"collection": {
 "title": "Persons and Addresses",
 "links": [
 {"rel": "person collection", "href": "...", "prompt": "List persons"},
 {"rel": "address create", "href": "...", "prompt": "Add another address"},
 ...
],
 "items": [...],
 "queries": [...],
 "template": {...}
}}

Another way to hide the underlying data model relationships is to
use the “Work in Progress” recipe to collect all the related informa‐
tion (person, addresses, online-contacts, etc.) incrementally as a
series of HTTP write requests. Then, once all the data is collected,
offer a “submit” operation to ship the complete collection as a final
HTTP request. For more on this, see Recipe 7.10.

258 | Chapter 6: Distributed Data

The key to using this recipe is to model the interface operations independently of any
internal data models. This will allow interface designers the freedom to change the
API details and/or the storage details in future releases without requiring a breaking
change.

Discussion
While the example here illustrates a single relationship (person and address), this
recipe works for any number of entity relation models. For example, the following is a
single write request that might be modeled as three storage collections (company, con
tact, and salesRep):

<form name="createEntry" method="PUT" action="...">
 <input name="companyId" value="p0o9i8" class="company" />
 <input name="companyName" value="BigCo, Inc" class="company" />
 <input name="contactId" value="y6t5r4: class="contact" />
 <input name="contactName" value="Mork Markleson" class="contact" />
 <input name="salesRepId" value="w2e3r4" class="salesRep" />
 <input type="submit" />
</form>

Note that the last data property in this write message is a reference to a saleRepId
and no other data properties for salesRep. In this case, this is a reference to an exist‐
ing saleRep resource. The interface and/or service layers are expected to know how
to deal with this situation. The data model (e.g., an SQL engine) might call for just a
reference field (as shown here) or, in a document interface model (e.g., a file-based
engine), the salesRep data may need to be read from storage and then included in
the final storage document.

It is a good idea to log the complete message that was submitted by
the client application. This is especially handy if clients request to
“back out” or cancel a write operation.

In the preceding example, the “entity hint” pattern (class="company") is employed.
This is a handy way to provide additional metadata to the API layer (or backend ser‐
vice) on how the client expects the data properties to be “grouped.” But it has its
limits. As long as the grouping is supplied by the party in charge of collecting the data
properties, it can work well. But it has a kind of “leaky” quality to it.

It is important that client applications not become too tied to any
data storage “hints” that appear in responses. This is because the
storage modeling might change at some future point, rendering
those “hints” incorrect at best and dangerous at worst.

6.3 Hiding Data Relationships for External Actions | 259

Typically, M2M interactions can handle large payloads (ones that include several
entity relations) better than human-to-machine interactions. People have a hard time
keeping lots of data in their heads, and really long input forms can be trouble for
users. If you are designing a human-to-machine interface, feel free to use the “flat”
model approach shown here. If you are designing a human-to-machine interface,
consider using the “Work in Progress” Recipe 7.10 instead.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 6.11, “Extending Remote Data Stores”
• Recipe 7.1, “Designing Workflow-Compliant Services”

6.4 Leveraging HTTP URLs to Support “Contains”
and “AND” Queries
HTTP has a simple information retrieval query language (IRQL) built into the proto‐
col. The URL query string can be used to support a simple, yet powerful search tool
by implementing the “contains” predicate along with the “AND” search condition.
This recipe shows you how to quickly and easily add solid search support to your ser‐
vice interfaces.

Problem
What’s the easiest way to add IRQL support to HTTP APIs? What search operators,
conditions, and predicates are needed for most HTTP queries?

Solution
The simplest search support you can implement for your HTTP interfaces is to lever‐
age the URL query string pattern for name/value pairs (?name=value). For HTTP
URLs, the implementation you need to support queries is to treat the = (equals)
operator that separates a name/value pair to actually check for “contains” or “in”
rather than a strict “equals” check.

Assume you have the following two records in some storage:

ID NAME CITY

q1w2e3 Mork Middletown

e3r4t5 Mick Morganville

260 | Chapter 6: Distributed Data

By implementing = as contains, you can implement the following queries:

?ID=q1w2e3 returns the first record

?ID=e3 returns both rows

In the first query, the search returns the same results as when the = operator is imple‐
mented as “equals.” However, the second query shows that the = operator is really
implemented to return any row in which the supplied value (e3) is “contained” within
the supplied field (ID).

You can also leverage the & reserved character in HTTP queries to implement the
“AND” search condition. That means:

ID=3e&NAME=Mi would return only the second row from the preceding table.

The URI specification indicates that the query portion of the URI is
defined as case-sensitive (e.g., X=m is not the same query as x=M).
However, in most implementations that I encounter, the query por‐
tion is implemented as case-insensitive. I recommend only imple‐
menting case-sensitive searches where absolutely necessary, and
when doing so, you make this implementation detail easily discov‐
ered to reduce confusion and frustration for your API users.

Implementing your HTTP search support using name/value pairs with = operation
supporting “contains” and the & supporting “AND” is the simplest IRQL you can
implement for your HTTP APIs, and in my experience is often the only one you
need. For more on URI query syntax, check out the related IETF specification.

Example
Most hypermedia formats support some version of query forms. Here are some snip‐
pets of representations using the data properties in the preceding table.

HTML support IRQL using FORMS:

<form method="GET" action="http://api.example.org/persons/" rel="search">
 <input name="ID" value="e3" />
 <input name="NAME" value="" />
 <input name="CITY" value="Mo" />
 <input type="submit" />
</form>

Which would be serialized as the following HTTP request:

GET /persons/?ID=e3&NAME=&CITY=Mo HTTP/1.1
Host: api.example.org
...

6.4 Leveraging HTTP URLs to Support “Contains” and “AND” Queries | 261

https://oreil.ly/POh1U
https://oreil.ly/lG9mx

Note that all three fields in the form are converted to name/value pairs in the URL,
even the field (NAME) with no search value. Be sure to account for this in your inter‐
face implementation. For example, you might not pass this name to the search service
unless you are sure the search service ignores empty values.

Here’s how the same query looks using the Collection+JSON format:

{"collection": {
 "title": "Persons",
 "links": [...],
 "item": [...].
 "queries": [
 {"name": "search", "href": "http://api.example.org/persons/",
 "data": [
 {"name": "ID", "value": "e3"},
 {"name": "NAME", "value": ""},
 {"name": "CITY", "value": "Mo"}
]
 }
],
 "template" : {...}
}}

The Collection+JSON example here would result in the same HTTP GET request
shown in the previous HTML example.

As a final example, the HAL media type does not support inline forms but it does
support inline URI templates. Here is an example of the same query as a HAL link
template:

{
 "_links": {
 "search": {"href": "http://api.example.org/persons{?ID,NAME,CITY}"}
 }
}

Notice that, while HAL supports URI templates, these templates do not support
including the values inline.

Discussion
Technically, any string value in the URL between the ? and the # (or the end of the
URL) is considered the query portion of the URL. You are free to insert any content
there you wish. However (again), if you create your own query syntax, you’ll need to
make sure your API clients understand this syntax before they attempt to create and
submit a query. I recommend against creating a new query string format.

It is valid to include the same name in a name/value pair multiple times in the same
query:

?city=northville&city=southland

262 | Chapter 6: Distributed Data

https://oreil.ly/WOELi

Be sure to take this into account when you implement query support in your API.

Creative Queries
There are lots of creative ways to use the HTTP query string to support IRQL fea‐
tures. I’ve stuck to the simplest support here since that is often sufficient. It is also the
one most commonly understood by HTTP client applications. Implementing other
operators (not-equals, less-than, greater-than, etc.) is certainly possible. So is support‐
ing features such as BETWEEN, LIKE, and so forth. However, the IETF has not estab‐
lished standards for expressing these in URIs and, if you really need them, you can
move on to other query technologies, like Lucene, SQL, and others. See Recipe 6.7 for
more on this topic.

A common (anti)pattern for implementing IRQL requests over HTTP is to include a
single URI query string property (e.g., ?q= or ?query=) followed by a custom data
query. Typically, it looks like this:

GET /?query=select * from users where id='q1w2e3r4'

Or sometimes the query value is URL encoded:

GET /?query=select%20%2A%20from%20users%20where%20id%3D%27q1w2e3r4%27

In both cases, you’re basically smuggling a data query as part of the URL. This is usu‐
ally a bad idea. Lots of things can (eventually) go wrong:

The query is too long.
The length of the query gets so long it may be truncated by some server or gate‐
way along the way.

The query contains reserved characters.
The query content may include a reserved URI character, which invalidates the
request.

URL encoding introduces errors.
Encoding the query can result in the service behind the API to misunderstand
the query, returning unexpected results.

The query exposes a security problem.
If you are using an exact data query (e.g., SQL statement), you’re creating an
opening for others to exploit a potential security hole, resulting in data theft or
damage.

The query introduces tight coupling.
By exposing a direct query tied to the data storage model (e.g., SQL, OData, etc.),
you’re creating a tight coupling between the data model and the API. For

6.4 Leveraging HTTP URLs to Support “Contains” and “AND” Queries | 263

https://oreil.ly/NTNnw

example, changes to the data model (adding/removing/renaming fields) can
break the API.

See Also
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.10, “Supporting Links and Forms for Nonhypermedia Services”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 6.6, “Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries”
• Recipe 6.12, “Limiting Large-Scale Responses”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

6.5 Returning Metadata for Query Responses
It is a good practice to return more than just the query results when returning data-
centric HTTP responses. You can include information that helps API consumers bet‐
ter evaluate the quality of the response as well as determine if the query needs to be
modified and resubmitted to get the desired results.

Problem
What’s the best way to represent HTTP IRQL results? What types of metadata should
be considered when returning the results of a data-centric HTTP query? How should
that metadata be represented in the query response?

Solution
For most data queries, it is not enough to just return the resulting data. It can also be
important to return metadata about the query to help client applications that made
the request better understand the quality and usefulness of the returned data. In this
section, we show a set of metadata values that should be considered as part of the
response representation for HTTP queries (see Figure 6-3).

264 | Chapter 6: Distributed Data

Figure 6-3. Query metadata recipe

How you deliver these metadata values depends on the number of properties you are
returning. If a small set of these values is returned, you can include the values in the
body of the response. If there are just a couple values to be returned, you can include
them with the actual data response as additional data properties. If there are several
relevant metadata values, you can return an HTTP link (either in the body or the
header collection) that points to a resource that contains all the query metadata. You
can also implement a mix of both. See the “Examples” section for details on how to
return these values:

Query status (q-status)
This is a simple description of the status of the requested query. Usually this
response would be “completed successfully,” but if the query was malformed,
timed out, or in some other way halted, this string can contain details on what
occurred along with possible changes to the query in order to complete success‐
fully. Note that this is not the same as the “error” status of an unsuccessful HTTP
request (aka an HTTP 400 response). See Recipe 6.6 for details.

Query sent (q-sent)
This is typically a copy of the HTTP query string or HTTP request body sent by
the API client application to the service interface. This can be used to remind
humans of the query that was sent as well as allow machines to validate that the
service interface parsed the submitted query properly.

6.5 Returning Metadata for Query Responses | 265

Actual query executed (q-executed)
In some cases the service interface may modify the query information it received
in order to submit that query to the data storage. For example, a simple HTTP
name/value pair query might be converted into an SQL “SELECT…” statement.
This property contains that resulting modified query. NOTE: this may introduce
security problems (see the “Discussion” section).

Number of returned records (q-returned)
The number of records returned in this response. This may be a subset of the
total number of records matching the query criteria (see q-count). For example,
the total records found might be 11,000, but the number of records returned in
this response might be 1,000.

Estimated size of the result set (q-count)
This holds the estimated total number of records selected in the query. For exam‐
ple, a query might result in thousands of selected records, but only the first 100
are returned to the client that initiated the request. If the estimated number is
quite high, this may indicate the query is too general and needs to be adjusted
(see “Query suggestions”).

Elapsed time for query execution (q-seconds)
This is the total time (in seconds) that it took for the service behind the interface
to execute the query. This can be handy as a diagnostic value. For example, is the
query service running slowly? Was this particular query “costly” in terms of
resources?

Date/time the query was executed (q-datetime)
You should always return the recorded date/time the query was executed. This is
especially true if the query response will be cached for later review.

Results relevance (q-score)
If available, it can be helpful to pass along any indication of the relevance of the
query results that may be returned from the query engine. For example, Lucene
supports returning the “score” of the query (usually at the document level). If
there is any characterization of the “relevance” of a query, it can be handy to
return it in the response metadata.

Data source(s) (q-source)
In some cases, it might be handy to return the data sources that were used in ful‐
filling the query. This can be helpful for those who want to “tweak” the query to
improve results. Note that this may introduce security and/or coupling problems;
see the “Discussion” section for details.

266 | Chapter 6: Distributed Data

https://oreil.ly/Hqswl

Query suggestions (q-suggest)
If the query returns too many records, or none at all, there might be suggestions
you can return to help client applications improve the quality of their results.
These might be suggestions to include or exclude certain fields, add/remove
ranges, etc.

Replay URL (q-location)
If the query is stored for later use by the interface or the underlying service, you
can generate a unique URL that can make it easy to replay the same query. This
replay might be just a return of the same result set or a repeated query using the
same (stored) query parameters.

You don’t need to include all these data fields in your query metadata. Select the ones
that make sense for each use case. For example, if the query was designed to return
just one record (?id=q1w2e3r4), you might include just the date/time metadata.

Example
When you want to return query metadata, you can use three possible locations:

• The HTTP response header collection
• The HTTP response body
• A link to a separate HTTP resource that contains all the query metadata

You can also do a mix of all of these.

You can pass the query metadata in the HTTP header collection:

**** RESPONSE ***
HTTP/1.1 /persons/?id=q1w2e3r4 200 OK
Q-Status: successful
Q-DateTime: 2024-12-12:00:12:0012TZ
...

You can also return query metadata as part of the HTTP response body:

**** RESPONSE ***
HTTP/1.1 /persons/?id=q1 200 OK
Content-Type: application/vnd.collection+json
...

{"collection": {
 "title": "Person",
 "metadata" : [
 {"name": "q-sent", "value": "?id=q1"},
 {"name": "q-datetime", "value": "2024-12-12:00:12:0012TZ"},
 {"name": "q-status", "value": "result set too large, query canceled"},
 {"name": "q-seconds", "value": "120"},
 {"name": "q-count", "value": "10000+"},

6.5 Returning Metadata for Query Responses | 267

 {"name": "q-suggest",
 "value": "reduce return set with additional query parameters"},
]
 ...
}}

If the query metadata is extensive, or if you want to reduce the amount of informa‐
tion in the query response, you can include a link to the query metadata in the header
and/or the body of the response representation:

HTTP/1.1 /persons/?id=q1 200 OK
Content-Type: text/html
Link: <http://api.example.org/queries/u7y6t5r4>;rel="query-metadata"
...
<html>
 <title>Person</title
 <meta name="query-metadata" href="http://api.example.org/queries/u7y6t5r4" />
 ...
 <body>
 Query Metadata
 ...
 </body>
</html>

In this example, the query metadata is returned when the client application follows
the query-metadata link (http://api.example.org/queries/u7y6t5r4). Here is an exam‐
ple of a query-metadata response in HAL format:

{
 "_links": {
 "self": {"href": "http://api.example.org/queries/u7y6t5r4"},
 },
 "q-status": "success",
 "q-sent": "?state=MN",
 "q-executed": "SELECT * from persons where contains(state,'MN')",
 "q-count": "750",
 "q-seconds": ".5",
 "q-datetime": "2024-12-12:12:12:12",
 "q-score": "100%",
 "q-source": "bigco.persons",
 "q-suggest": "none",
 "q-location", "http://api.example.org/queries/t5y6r4u7"
}

Of course, you can mix and match these options by including some basic data in the
headers (e.g., Q-DateTime), some in the body (e.g., q-status, q-count, q-suggest,
etc.), and all of the information in a separate query-metadata resource (via an HTTP
link).

268 | Chapter 6: Distributed Data

http://api.example.org/queries/u7y6t5r4

Discussion
Returning query metadata is a “mixed bag” of good and bad. Too much metadata—
for example, actual query executed, query sources—can expose too much informa‐
tion about your services and data technology, creating security challenges and intro‐
ducing the possibility of tight coupling. At the same time, having no metadata at all
can result in inefficient queries, challenges responding to invalid (or malformed)
requests, and generally make it hard for API consumers to easily and safely craft
quality queries. You’ll need to use caution and experience to find the right balance in
each unique case.

Are These Standard Metadata Properties?
This recipe introduces a handful of query metadata properties (q-status, etc.). These
are not standardized and are not registered header or link relation values. They are
values I’ve used over the years for the projects I’ve worked on, and I’ve found them
handy. It is possible you have some metadata values of your own, too. Feel free to use
them (after documenting them properly using Recipe 3.4) and share them with the
wider community.

Ultimately, it is the service behind the interface that is responsible for protecting itself
against malformed or malicious queries. However, the service interface can often take
on some of that responsibility, too. Remember that it is the interface that defines the
limits of HTTP responses. You can (and should) adopt documented limits to query
responses (record count, execution time, etc.). See Recipe 6.12 for more on this topic.

The q-location metadata property is meant to hold a “quick link” to the query
results. You can use this to recall a previously executed (and saved) query or as a way
to re-execute the saved query parameters to get updated results.

Resist the temptation to load the query metadata with service-
specific internal information (e.g., debugging, performance statis‐
tics, etc.). This kind of data should not be shared at the HTTP level
with other services and API client applications. Limit the shared
values in query-metadata to those that are directly related to the
API consumer’s needs, not the underlying service’s needs.

Supporting a query-metadata resource link is a good idea if you have lots of query
metadata and/or the query is used often (whether accessing an old result or generat‐
ing a new one). For cases where you are using a simple HTTP name/value query to
return a single record, this additional resource may not be very helpful.

6.5 Returning Metadata for Query Responses | 269

See Also
• Recipe 5.8, “Supporting Shared Vocabularies in Standard Formats”
• Recipe 5.10, “Publishing API Metadata”
• Recipe 5.12, “Standardizing Error Reporting”
• Recipe 6.6, “Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries”
• Recipe 7.7, “Exposing a Progress Resource for Your Workflows”

6.6 Returning HTTP 200 Versus HTTP 400 for
Data-Centric Queries
When implementing data-centric APIs, there will be some cases where the response
body contains no records. In these cases, it is important to return the proper HTTP
status code: the one that accurately communicates the meaning behind the empty col‐
lection in the response.

Problem
When returning an HTTP response to a data-centric request, what is the proper
HTTP status code to use when the response collection is empty? Should the response
always be 200 OK? Or always be a 404 or some other 4xx status code? How do you
decide which class of status codes to return, and what is the best way to handle
“empty” responses to data-centric HTTP requests?

Solution
Like any other HTTP request, the HTTP status code is an important way to indicate
the condition of the response that was returned. And, even when the HTTP request is
essentially a data query, the same rule applies. If the request was properly formatted
and the server was able to parse and process the response, the HTTP status code
should be in the 2xx class. However, if the server was unable to fulfill, understand, or
process the request due to errors either in the requests or in the service tasked with
fulfilling that request, the HTTP status should be either 4xx (due to a client-side
problem) or 5xx (due to a service-side problem).

There are some minor variations on this general rule. See the following list for details:

200 OK

If the request was well-formed, and was meant to return a collection of records
that meet a filter rule (e.g., /persons/?status=pending), and the result of fulfill‐
ing the request is an empty collection (e.g., the service can find no records that
match the search criteria), the HTTP status should be 200 OK.

270 | Chapter 6: Distributed Data

404 Not Found

If the request is meant to return a single, existing resource (e.g., /persons/?
id=q1w2e3) and that URL points to a resource that does not exist, then the API
should return an HTTP 404 Not Found status code with details.

4xx Bad Request

If the client application has made an invalid request (e.g., a bad URL, improperly
formed data query, etc.), then the API should return a 400 Invalid Request
response (along with details on how to correct the problem).

5xx Server Error

If the client request was correct but the underlying service is unable to fulfill the
request due to a server-side problem (e.g., unable to reach the data store, network
failures, etc.), then the API should return a 5xx class status code with details.

Using URL query strings to return a single resource is a weak
design pattern that should be avoided. Instead of using persons/?
id=q1w2e3 to return an existing HTTP resource, a better design
choice would be /persons/q1w2e3.
Of course, we don’t always get to choose our URL designs; we
sometimes need to learn to work with URLs designed by other peo‐
ple for services we do not control.

In general, return 200 OK with an empty collection for any well-formed queries.
Reserve 4xx and 5xx status codes for cases where the client or service encounters an
error. The single-resource query that returns 404 is the exception to this rule.

Example
There are four common cases to deal with when determining the proper HTTP status
code for “empty” responses to a data-centric query.

Return 200 OK when the filter criteria results in an empty collection
When returning an empty collection in response to a data-centric HTTP request, you
should use the 200 OK status along with some metadata about the query (see Recipe
6.5 for details):

**** REQUEST ****
GET /persons/?status=pending HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json
...

**** RESPONSE ***
HTTP/1.1 200 OK

6.6 Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries | 271

Content-Type: application/vnd.collection+json
...

{"collection": {
 "title": "Persons",
 "metadata": [
 "name": "q-status", "value": "success",
 "name": "q-sent", "value": "?status=pending",
 "name": "q-count", "value": "0"
],
 "items": []
}}

Note the query metadata (see Recipe 6.5) in the response body. Adding this kind of
information in the response can clarify the meaning of the “empty collection” that
was returned.

Return 404 when the query string points to a resource that does not exist
When using the URL query string to locate an existing resource, you should return
HTTP status 404 Not Found to indicate that the requested HTTP resource does not
exist:

**** REQUEST ****
GET /persons/?id=q1w2e3 HTTP/1.1
Accept: text/html
...

**** RESPONSE ****
HTTP/1.1 404 Not Found
Content-Type: text/html
...

<html>
 <title>Not Found</title>
 <body>
 <h1>Not Found</h1>
 <div class="error">
 Unable to locate the requested resource
 ?id=q1w2e3
 </div>
 </body>
</html>

Remember that this use of HTTP 404 is limited to cases where the URL plus query is
designed to return a single resource instead of a collection of data rows or resources.

Return 4xx when the client application has sent an invalid request
In cases where the client application has sent an invalid request, you should return
the appropriate 4xx status code with hints on how the client can fix the problem:

272 | Chapter 6: Distributed Data

**** REQUEST ****
GET /persons/?hatsize=13 HTTP/1.1
Accept: application/vnd.collection+json
...

**** RESPONSE ****
HTTP/1.1 400 Bad Request
Content-Type: application/vnd.collection+json
...

{"collection": {
 "title": "Persons List",
 "error": {
 "title": "Data Filter Error",
 "message": "The data property 'hatsize' does not exist"
 }
}}

Note that in this example, the request is not malformed at the HTTP level. Instead,
the data service cannot process the request since the data in the query is invalid. Of
course, there may be cases where the HTTP request itself is invalid, which will result
in a 4xx response.

Return 5xx when the service cannot fulfill a valid request
There will be cases where the client sends a valid query but the underlying service is
unable to properly fulfill the request. For example, the service interface cannot reach
the source data or the underlying data request take too long to process, etc. In these
cases, the API should return the proper 5xx class status code along with information
on the state of the service interface:

**** REQUEST ****
GET /persons/?status=active HTTP/1.1
Accept: application/vnd.hal+json
...

**** RESPONSE ****
HTTP/1.1 504 Gateway Timeout
Content-Type: application/problem+json
....

{
 "type": "https://api.example.org/problems/time-out",
 "title": "Data query timed out.",
 "detail": "The remote data storage took too long to reply.",
 "instance": "/persons/?status=active",
 "q-status": "failed",
 "q-seconds": "120",
 "q-suggest": "Try again later."
}

6.6 Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries | 273

Note the use of the HTTP problem details media type (see Recipe 5.12) along with
query metadata (see Recipe 6.5) to improve the quality of information returned to the
client application.

Discussion
When attempting to decide whether to use 200 or 4xx for data-centric responses, be
sure to take into account whether the request is designed to return collections or
designed to return a single resource. In the first case, an empty response is “OK.” In
the single resource case, an empty response means the resource was not found.

Returning 4xx and 5xx responses in your service interfaces may
result in exposing internal details of your network or services.
When crafting HTTP error responses, always be careful not to
reveal too many details on where (and how) your data is stored.

In some cases, your API might be calling other service interfaces that do not follow
this recipe. For example, a service might return 404 when the collection query results
in zero rows returned. Whenever possible, do not echo this behavior back to your
own API clients. Instead, modify the return you pass on to downstream clients to fol‐
low the “200 OK” rule. This will result in a more consistent and reliable interface for
your APIs.

See Also
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 5.12, “Standardizing Error Reporting”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

6.7 Using Media Types for Data Queries
Implementing data query support for your service interfaces can be challenging
because you’re often forced into selecting—and exposing as part of your interface—a
single data technology (SQL, GraphQL, Lucene, etc.). This runs counter to the notion
of creating loosely coupled APIs that hide the underlying implementation details.

One alternative is to create your own local data query language; one that is not tied to
a single data technology. However, doing this can lead you into creating and main‐
taining a complete data language, which can result in a new, tight coupling. While
this seems easy at first, it can become impractical at scale.

274 | Chapter 6: Distributed Data

This recipe offers a way to decouple data technology from your interface while still
taking advantage of powerful established data query languages.

Problem
What’s the best way to implement data query support for a service interface? Do you
need to select one of the existing query languages (SQL, GraphQL, Lucene, etc.)? Or
do you invent your own data query language that is not tied to a single backend tech‐
nology? How can you support more than one query language for the same service
interface? Is there a way to support well-known data query languages without locking
your API into a single tightly coupled backend service? What happens when that
backend service changes in the future (e.g., migrates from SQL to GraphQL)?

Solution
Balancing the desire for loosely coupled implementations for your APIs against the
power of embracing a well-known data query language like SQL or GraphQL can be a
challenge. There is a rather simple solution that I have found helpful. However, I
rarely see it employed by others. That solution is to implement your data query lan‐
guage support over HTTP as a media type. Elsewhere in this book, I’ve discussed the
power of using registered media types (RMTs) (see Recipe 3.1) and semantic profile
documents (SPDs) (see Recipe 3.4), as well as the advantage of supporting content
negotiation (see Recipe 5.6). The same principles can be applied to supporting nego‐
tiable data query languages, too.

The first step is to adopt the policy of using media type definitions for data query lan‐
guages. This has already been done for the SQL format with RFC 6922. That specifi‐
cation documents the application/sql media type as a way to submit SQL queries
over HTTP (see the “Example” section).

Although not officially registered, I’ve used the same technique to support other
query languages for my APIs, including:

• application/prs.solr+json for Solr
• application/prs.odata+json for OData
• application/prs.graphql+json for GraphQL

As of the writing of this book, there are no registered media types
in the IANA registry for Solr, OData, and GraphQL. I use an
unregistered media type identifier that contains the prs. prefix
(indicating a “personal” or “vanity” registration). Be sure to moni‐
tor the IANA Media Type Registry to learn when these and other
data query languages register their official media type identifiers.

6.7 Using Media Types for Data Queries | 275

https://oreil.ly/MFkwv
https://oreil.ly/IE1CE
https://oreil.ly/uiQ5e
https://oreil.ly/3dN9f
https://oreil.ly/YMMQQ

The key to making this recipe work is to leverage HTTP request bodies to send the
data query. For example, the API client can craft a valid query using the designated
language (SQL, OData, etc.). That message becomes the body in an HTTP POST or
PUT request (see Recipe 5.15) sent to the service interface. The API accepts the request
and then, if needed, converts that into a form usable by the underlying data engine
and executes the query, returning the results to the API caller.

Using PUT/POST to submit data queries means it’s possible to easily
store and replay those same queries in the future. See Recipe 7.14
for a recipe that shows you how to do this.

By converting your data query requests to media type requests, you also get to take
advantage of HTTP content negotiation (see Recipe 5.6). You can include supported
data query media types in your service metadata (see Recipe 5.10) and list the media
type strings in your client preferences responses (see Recipe 5.5).

Example
Here’s the HTTP exchange for submitting as data query using SQL:

**** REQUEST ****
PUT /person/queries/q1w2e3r4 HTTP/1.1
Host: api.example.org
If-None-Match: *
Content-Type: application/sql
Accept: text/html
...

SELECT id,name,city FROM persons where city LIKE '%ville%'

**** RESPONSE ****
HTTP/1.1 301 Moved Permanently
Location: http://api.example.org/person/results/p0o9i8u7

**** REQUEST ****
GET person/queries/p0o9i8u7 HTTP/1.1
Accept: text/html

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: text/html
ETag: "w/o9p0i8y6"
...
<html>
 <title>Persons</title>
 <body>
 <div class=query-metadata>

276 | Chapter 6: Distributed Data

 success

 SELECT id,name,city FROM persons where city LIKE '%ville%'

 </div>
 <div class="results">
 ...
 </div>
 </body>
</html>

Note that the query was sent using the application/sql content type to communi‐
cate to the service interface which query engine to use for this request. You can also
see the use of query metadata (see Recipe 6.5) in the response. See Recipe 5.15 for
details on how to use PUT to create new resources instead of POST.

Two Resources Are Better than One
In all the examples in this recipe, the PUT request used to create a new resource
(/person/queries/q1w2e3r4) creates a data query resource and then uses that data
query resource to create the data results resource (person/results/p0o9i8u7). These
are two separate resources. One holds the query. The other holds the results. The
results resource can be called to return the static results from the data query. The
query resource can be used to rerun the query against the data source and retrieve a
new result set (and possibly a new URL). For more on this, see Recipe 7.14.

If the interface supports it, the same query could be crafted using Solr:

**** REQUEST ****
PUT /person/queries/q1w2e3r4 HTTP/1.1
Host: api.example.org
If-None-Match: *
Content-Type: application/prs.solr
Accept: text/html
...

fl=id name city
city:ville

6.7 Using Media Types for Data Queries | 277

Or maybe an OData query:

**** REQUEST ****
PUT /person/queries/q1w2e3r4 HTTP/1.1
Host: api.example.org
If-None-Match: *
Content-Type: application/prs.odata
Accept: text/html
...

$select=id, name, city
$filter=contains(city,'ville')

OData has its own rules for how to craft queries for use in HTTP POST and GET
requests. It should be noted that, as of OData 4.1, the rules have changed significantly,
too. I have adopted this format (which is slightly easier to read than the current ver‐
sion) and, depending on what version the backend OData engine is running, will
rewrite the query to be compliant with the engine. Adopting this, or a similar
approach, can keep your service interface stable, even when the backend query
engine changes over time.

I found this article by John Gathogo covering the use of OData
over HTTP very helpful.

For one more example, here’s the same request crafted for the GraphQL query engine:

**** REQUEST ****
PUT /person/queries/q1w2e3r4 HTTP/1.1
Host: api.example.org
If-None-Match: *
Content-Type: application/prs.graphql
Accept: text/html
...

{
 person(city: {regex: "/ville/"}) {
 id
 name
 city
 }
}

Like the OData query engine, GraphQL has its own rules for sending data queries via
HTTP POST and GET. Be sure to check the documentation and, if needed, insert a
rewrite step to convert the application/prs.graphql message to one acceptable to
the GraphQL engine.

278 | Chapter 6: Distributed Data

https://oreil.ly/sBPaa

The thing to keep in mind for this recipe is that your goal is to create a stable, decou‐
pled way to submit technology-specific data queries.

Discussion
Communicating data queries via a media type encapsulates the data technology to a
strongly typed message format. It also makes it possible to implement multiple data
query languages for the same data store without making changes to the interface.
That means you can implement support for application/sql when you first release
the API and, if needed, you can also safely add support for Solr or GraphQL at some
future date.

It bears repeating that the recipe shown here uses PUT to create a new resource, not
POST. However, the underlying service may need to use POST against, for example, a
GraphQL or OData query. Or it might use GET for Solr, for example. The PUT method
used here is just for our service interface and is independent of any HTTP request
made to backend services.

It might seem better to just adopt the HTTP conventions of the data engine directly
and not introduce an additional media type implementation for your data query sup‐
port. This is fine as long as you don’t plan on changing your query engine in the
future and you don’t plan to honor any breaking changes the query engine makes in
the coming years. Even though there is some up-front cost (establishing a media type
string, setting up an HTTP PUT/POST endpoint, implementing a rewriter, etc.), adopt‐
ing this recipe can pay off over time.

The SPARQL query language was designed to be used over HTTP. Since it already has
its own set of associated media types, supporting SPARQL fits well into this recipe.

It should be noted that there is no rule that requires the SQL query language to be
applied only to SQL-based storage. It is certainly possible to maintain support for
SQL queries after you have converted all your SQL databases to file-based storage.
The key is to treat the query language as a separate layer in your interface implemen‐
tation. That way, if needed, you can change backend storage without changing the
service interface.

Be careful to not fall into the trap of designing your own data query language. Unless
you plan on creating your own unique data engine, it is better to use this media type
pattern to create a kind of interoperability between data services and query languages.
This offers lots of possibilities without introducing a new language that you may not
have the resources to support over time.

See Also
• Recipe 3.1, “Creating Interoperability with Registered Media Types”

6.7 Using Media Types for Data Queries | 279

https://oreil.ly/Jp3Mr

• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 5.6, “Supporting HTTP Content Negotiation”
• Recipe 5.10, “Publishing API Metadata”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

6.8 Ignoring Unknown Data Fields
Sometimes the data messages being exchanged have more data properties than
expected or desired. In those cases, it is a good idea to just ignore the “additional”
data properties and continue to process the parts of the message you are interested in.

Problem
There will be times when the data messages exchanged between services contain
more data properties than the API consumer wants. For example, a service designed
to manage email addresses may be talking to a data service that returns complete
addresses for physical and electronic delivery. What is the best way for the consuming
service to ensure data integrity when it only reads/writes the properties it knows
about? Does the consuming service only return the properties that were modified? Or
does it return all fields, even ones it does not understand?

Solution
When reading and then updating a data record from another service, you should
always exchange the complete data record, even when that record contains fields you
did not edit and/or don’t understand. This is true when you are updating the record
yourself and returning it to the source. It is also true when you are forwarding the
data record to another service for processing and supporting updates from the for‐
warding service.

In general, it is not a good idea to strip data from an incoming data message if you (or
some other service you are passing the data from) also support writing that data back
to the source. For example, attempting to write partial values to a data store can lead
to cases where the updated values are not compatible with the unedited values. That
means that the stored data loses integrity, or the write is rejected. Both results dimin‐
ish the reliability of your service.

280 | Chapter 6: Distributed Data

At the heart of this solution is what is loosely referred to as the “Must Ignore” rule.
When receiving a message from another party, just ignore the parts of the message
you don’t understand. Operate on the parts you were designed to understand, and
return the entire block if you are attempting an update.

Example
Consider the case shown in Figure 6-4 where you create an interface that supports
reading/writing email addresses for users (emailUpdater).

Figure 6-4. Email updater

However, it turns out your interface gets its source data from another service
(addressManager) that holds lots of information about email and physical delivery
addresses for users (Figure 6-5).

6.8 Ignoring Unknown Data Fields | 281

Figure 6-5. ALPS document for the address manager API

When requested, the emailUpdater gets the record identifier from the API caller (GET
http://api.emailupdater.org/q1w2e3r4) and uses that to make a call to the address
Mananger, which returns the following message:

**** REQUEST ****
GET /q1w2e3r4 HTTP/1.1
Host: api.addressManager.org
Accept: application/vnd.collection+json
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Content-Length: XX
ETag: "w\u7y6t5r4"

{"collection": {
 "title" : "Address Manager",

282 | Chapter 6: Distributed Data

http://api.emailupdater.org/q1w2e3r4)

 "links" : [...],
 "items" : [
 {"href": "http://api.addressmanager.org/q1w2e3r4",
 "rel" : "address",
 "data" : [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "name", "value": "Mork Mickelson"},
 {"name": "street", "value": "123 Main"},
 {"name": "city", "value": "Byteville"},
 {"name": "state", "value": "MD"},
 {"name": "zipCode", "value": "12345"},
 {"name": "email", "value": "mork@example.org"}
]
 }
],
 "template": {...}
}}

Next, the emailUpdater modifies the email as requested and returns the complete
address record to addressManager:

**** REQUEST ****
PUT /q1w2e3r4 HTTP/1.1
Host: api.addressManager.org
Accept: application/vnd.collection+json
Content-Type: application/vnd.collection+json
If-Match: "w\u7y6t5r4"
...

{"template": {
 "data": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "name", "value": "Mork Mickelson"},
 {"name": "street", "value": "123 Main"},
 {"name": "city", "value": "Byteville"},
 {"name": "state", "value": "MD"},
 {"name": "zipCode", "value": "12345"},
 {"name": "email", "value": "mickle@example.org"}
]
}}

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Content-Length: XX
ETag: "w\i8u7y6t5"

{"collection": {
 "title" : "Address Manager",
 "links" : [...],
 "items" : [
 {"href": "http://api.addressmanager.org/q1w2e3r4",
 "rel" : "address",
 "data" : [

6.8 Ignoring Unknown Data Fields | 283

 {"name": "id", "value": "q1w2e3r4"},
 {"name": "name", "value": "Mork Mickelson"},
 {"name": "street", "value": "123 Main"},
 {"name": "city", "value": "Byteville"},
 {"name": "state", "value": "MD"},
 {"name": "zipCode", "value": "12345"},
 {"name": "email", "value": "mickle@example.org"}
]
 }
],
 "template": {...}
}}

Finally, imagine that—at some future point—the addressManager adds some new
data properties to its messages (e.g., telephone and sms). The emailUpdater can con‐
tinue to do the same task of modifying the one field it knows about and simply pass‐
ing back all the fields it was returned. In this way, the service behind the emailUp
dater interface does not need to be modified each time a new field is added by the
addressManager service.

Discussion
The idea of ignoring elements of a message is a handy way to add resilience to serv‐
ices and APIs that interact with other interfaces. When you are working with other
service interfaces that you do not control, you can’t be sure of what is going on
behind the scenes. You only know what the interface promises. Over time it is possi‐
ble that the interface will change and, as long as it doesn’t change the promises you
count on, adding/removing fields or actions outside the scope of your needs is of no
real interest to you.

The “Must Ignore” Rule
This pattern of passing along any fields you don’t understand instead of removing
them is a key element in supporting future compatibility for services and interfaces.
The web itself was built with this assumption in mind, too. A good document for
reading more about what is loosely called the “Must Ignore” rule can be found in the
document “Extending and Versioning Languages Part 1” from the W3C website.

This recipe depends on the ability of a service to recognize and use hypermedia forms
in responses. Like all service interfaces, data services should return hypermedia-rich
messages (see Recipe 3.5 and Recipe 4.9) that include instruction on how callers can
execute additional actions. If you are using a return format that does not support
hypermedia (e.g., HAL, CSV, plain JSON, etc.), then you should return a pointer to
another document that contains action descriptions (e.g., HAL-FORMS, XML/JSON
Schema, ALPS, etc.).

284 | Chapter 6: Distributed Data

https://oreil.ly/cLnAV

This recipe is closely related to Recipe 6.13 (about pass-through proxies). In fact, you
can see this recipe as advice for API consumers that might be talking to an interface
that is acting (behind the scenes) as a data proxy. Of course, your service will never
actually know if it is talking to a data proxy. Your service will just know that it is talk‐
ing to a service interface that is fulfilling action promises.

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.11, “Validating Data Properties at Runtime”
• Recipe 4.13, “Using Document Queries to Validate Incoming Messages”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 6.13, “Using Pass-Through Proxies for Data Exchange”

6.9 Improving Performance with Caching Directives
HTTP has a rich caching model built into the protocol. For data-centric services, this
caching model can improve perceived performance and reduce latency—all without
much effort.

Problem
When the service depends on remote data sources, it can lead to perceived poor per‐
formance due to slow networks and, at times, network-related failures. How can you
improve the perceived performance of your service even when you depend on remote
data-centric services that you do not control? How can the HTTP caching model be
used on both the service and client side to improve reliability and availability of run‐
time services?

Solution
When your service interface relies on other, remote, services for data, the easiest way
to improve perceived performance is by leveraging the HTTP caching models built
into the protocol. That means service providers need to mark every response with
caching metadata to help consumers understand the lifetime of the response. This

6.9 Improving Performance with Caching Directives | 285

also means service consumers need to check for, and honor, the caching metadata in
order to improve the quality of API responses.

Keep Your Data Close
Caches can be kept on the provider’s machine, a third-party Content Delivery Net‐
work (CDN) machine, or even on the API consumer’s machine. The closer the cache
is to the client, the faster the perceived speed of your service.

For a better understanding of the HTTP caching model, see the
HTTP specifications for caching in RFC 7234.

In this recipe, I’ll only be covering the caching model metadata for HTTP 1.1 and
later. Caching directives are also sprinkled throughout the HTTP header collection
that work for HTTP 1.0 services: Age, Expires, and Pragma. See the HTTP caching
specification for details.

For a full list of caching directives, see the HTTP Cache Directive
Registry.

Response caching metadata for service providers
Service providers can mark their responses with caching metadata. Typically, this
means indicating the caching scope (public or private), the maximum length the
response can be held (max-age), and how responses should be handled (no-store,
no-cache, must-revalidate, etc.). This works well for responses that don’t change
very often; for example, things like static lookup lists or written documentation that
rarely changes.

If you are consuming a data-centric service API that does not use
caching directives, try to encourage them to add caching support
to their responses. This can be especially effective if you are in an
enterprise setting where the data-centric services are authored and
supported by another team within your company.

286 | Chapter 6: Distributed Data

https://oreil.ly/E6Z6E
https://oreil.ly/qk3ab
https://oreil.ly/qk3ab

For cases where the response contains information that might change frequently, you
can use directives that tell API consumers to check back with the origin server before
replaying cached responses. Service interface providers can return the ETag along
with Cache-Control: must-revalidate to tell API consumers that they should craft
conditional requests (GET or PUT/DELETE) by returning the value of the ETag in the
If-Match header.

Immutable Caching
A cache directive named immutable can be used to help API consumers better under‐
stand that the response has a long, dependable life. This is typically used for subre‐
sources like news photos accompanying text. Data-centric services can use this direc‐
tive when returning long-lived responses like static lists, product images, etc. To learn
more about how to use this directive, see RFC 8246.

This pattern also works well if service providers anticipate that API consumers will
send updates (PUT/POST/PATCH/DELETE) for the same resource and want to make sure
the action is not completed if the server’s version of the resource has already been
modified.

Caching metadata for API consumers
When sending requests to a service interface, API consumers can use caching meta‐
data to qualify the type of response that the consumer is willing to accept. For exam‐
ple, including the directive Cache-Control: max-age=600, min-fresh=300 in an
API request tells the provider that the consumer wants to make sure the response is
no older than 10 minutes (max-age=600) and has at least another 5 minutes of “fresh‐
ness” left (min-fresh=300).

These kinds of caching directives make sense when the API consumer wants to be
sure to get a response that can be held for a while in order to reduce “refresh churn”
on the client side.

API consumers can also use caching metadata in the request to force service inter‐
faces to deliver a “brand-new” response by using the Cache-Control: no-cache
directive. This is handy when the API consumer wants the most recent resource rep‐
resentation in order to, for example, edit that record.

Clients can also use the Cache-Control:max-stale, stale-if-error directives to
tell service interfaces it’s OK to return a “stale” copy of the resource if that is the only
one available. This is a good idea when the API consumer wants to fulfill a read-only
request (no editing anticipated) and would rather get an old response instead of hav‐
ing to report a 4xx or 5xx status.

6.9 Improving Performance with Caching Directives | 287

https://oreil.ly/Nw1k9

Example
What follows are examples of applying caching metadata to provider responses and
client requests. There is also an extended example that walks through a scenario
where both client and server are using caching metadata to improve both the respon‐
siveness and quality of the interchange.

Example provider response caching metadata
Here is a simple response with caching metadata added:

**** REQUEST ****
GET /provinces/list HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Content-Length: NN
Date: Tue, 15 Nov 2022 08:12:31 GMT
Cache-Control: public, max-age=600
...

This response caching metadata tells the API consumers that the response is cachea‐
ble by any proxy (public), and that it can be stored (and replayed) for up to 10
minutes following receipt of the response.

The following shows how a service interface can provide caching metadata that
instructs API consumers to craft conditional requests (GET or PUT/DELETE) using the
HTTP entity tag header and the must-revalidate directive:

GET /user/q1w2e3r4 HTTP/1.1
Host: api.example.org
Accept: application/vnd.siren+json
...

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.siren+json
Content-Length: NN
ETag: "w/p0o9i8u7y6t5"
Date: Tue, 15 Apr 2022 11:12:13 GMT
Cache-Control: public, max-age=300, must-revalidate, stale-if-error
...

In this case, API consumers are told they can keep the current response for up to five
minutes and, if asked for it, they first need to confirm with the backend server that
both server and cache have the same version (via the ETag header) before returning
the cached copy to the API consumer. Note the use of the stale-if-error directive,

288 | Chapter 6: Distributed Data

which tells the cache holder that, in cases where the validation request fails (e.g., a
network error), it is OK to return this copy of the response, even if the “freshness
date” has passed.

Consumer request caching metadata
The following is an example of an API request where the consumer wants to make
sure the response is no older than 10 minutes (max-age=600) and has at least another
5 minutes of “freshness” left (min-fresh=300):

**** REQUEST ****
GET /users/list HTTP/1.1
Host: api.example.org
Accept: application/vnd.hal+json
Cache-Control: max-age=600, min-fresh=300

API consumers can also use caching directives in the request to force service inter‐
faces to deliver a “brand-new” response:

**** REQUEST ****
GET /users/q1w2e3r4 HTTP/1.1
Host: api.example.org
Accept: application/vnd.hal+json
Cache-Control: no-cache

Here is an example of an API consumer telling the service interface it is OK to send a
“stale” copy of the resource if that is the only one available right now:

**** REQUEST ****
GET /users/q1w2e3r4 HTTP/1.1
Host: api.example.org
Accept: application/vnd.hal+json
Cache-Control: max-stale, stale-if-error

Extended caching metadata example
When service interfaces return caching metadata in HTTP responses, it is important
that the API consumer honor those directives and use them as intended. For exam‐
ple, API providers might indicate the response can be locally cached for up to 10
minutes after receipt (Cache-Control: max-age=600). When true, the API consumer
should save a copy of this response and replay that stored response whenever that
resource is needed within the time window indicated.

Consider a case where there is a service that keeps track of customer data and one
that keeps track of order data. Your service returns an aggregation of those two data
sources in the form of a customer-order read-only service. As the API consumer for
customer and order APIs, you should honor the caching metadata returned by these
services.

6.9 Improving Performance with Caching Directives | 289

Here’s the request for a single record from the customer service:

**** REQUEST ****
GET /customer/e3r4t5y6 HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json
Cache-control: no-cache

**** RESPONSE ****
HTTP/1.1 200 OK
Host: api.example.org
Content-Type: application/vnd.collection+json
Cache-Control: private, max-age=600, must-revalidate
ETag: "w/i8u7y6t5r4er3"

And here’s the request for related content from the orders service:

**** REQUEST ****
GET /orders/filter?customer=e3r4t5y6 HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json
Cache-control: max-stale

**** RESPONSE ****
HTTP/1.1 200 OK
Host: api.example.org
Content-Type: application/vnd.collection+json
Cache-Control: private, max-age=1800
ETag: "w/u7y6t5r4e3w2"

Note that, in the first case, the request to the customer service asks for a “fresh” copy
of the resource (Cache-Control: no-cache). But in the case of the list of related
records (the order service), the request says it will accept a stale response if that is all
that is available (Cache-Control: max-stale). This is a common arrangement. Indi‐
vidual records (ones that might be updated) often need to be “fresh” copies, but
related lists could be “not so fresh.” However, when a single resource from the order
service is needed, it would be wise to mark that request Cache-Control: no-cache in
order to get the most recent one.

Discussion
It is good practice for all services to provide caching metadata in responses. This is
especially important for data-centric services where it is likely that the responses
(essentially, the data records) will be reused often.

The rate of expected data change (e.g., how often a record is modified) is a good
guide for how long the resource can be cached. If the underlying data is not changed
often—for example, a list of states or provinces, street addresses, etc.—then the cach‐
ing period for this data can be relatively long: hours or days. But if the base data is

290 | Chapter 6: Distributed Data

more volatile—say, the contents of a shopping cart—then the caching period should
be very short: possibly only a few seconds.

API clients should use the no-cache directive sparingly. It is essentially a “cache-
buster” that can add additional burden to service interfaces. If the client expects to
edit the resource, it makes sense to use the no-cache directive to get the most recent
copy of the data. Otherwise, the client should just allow the provider to send the
default (cached, if available) response.

Your Mileage May Vary
An important caching-related header not covered in this recipe is the Vary header.
This header can be used to indicate which HTTP elements (besides the URL, host,
and method) should be considered when caching a response. For example, Vary:
Authorization indicates that the response can only be replayed if the values of
Authorization on subsequent requests match. Another common Vary directive
includes things like accept-language, content-type, or other negotiable elements.

Providers should keep these things in mind when marking a response with Cache-
Control directives to make sure the wrong representation is not “replayed.”

In cases where the data is long-lived (static lists, stable documents, etc.), API consum‐
ers can use caching to build up their own local copy of commonly used data records.
This is a kind of “low-fidelity” replication pattern. For more along these lines, see
Recipe 7.14.

See Also
• Recipe 4.15, “Maintaining Your Own State”
• Recipe 5.14, “Increasing Throughput with Client-Supplied Identifiers”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

6.10 Modifying Data Models in Production
At some point you may need to update the data model your service is using to create
resources. When that happens, you need to come up with a way to modify your data
model without breaking any existing data consumers.

6.10 Modifying Data Models in Production | 291

https://oreil.ly/vZtk4

Problem
How can you safely update your service’s data model after it has already been released
into production? What aspects of the model can be changed without breaking API
consumers? What happens if you update your model in a new release and need to roll
back that model change?

Solution
The most effective approach for supporting data model changes for production data
services is to design the data store to support changes from the very start. That means
modifications are not “bolted on” or an “afterthought,” but are actually part of the
original design.

A good way to build in model changes for your data storage is to adopt a two-tier
approach to modeling data through the use of explicit and implicit data properties.
Explicit fields are part of the model or schema (e.g., {"familyName" : "Quarkus"}).
Implicit fields are part of a name-value collection associated with the model (e.g.,
{"nvp": [{ "name": "familyName", "value": "Quarkus" }]}). When you create
an array or collection property that can hold an arbitrary number of name and value
elements, you build in the ability to add new properties to your data model without
changing the existing model or schema.

A key advantage to this approach is that new properties can be added to the name-
value collection without requiring schema updates for all your API consumers. It also
means that, if you release a new edition of your service API that collects additional
data fields and then need to back out that release, your data model does not need to
change and you don’t lose all the data collected in the new name-value pair fields.
Then, when you fix any bugs and create a new release, you can take advantage of the
previously collected data. Essentially, you’re creating a data modeling pattern that
supports both forward and backward compatibility.

Example
Usually, local data stores are modeled as a strongly typed data object. For example,
the following is a person storage object:

{
 "givenName": "John",
 "familyName": "Doe",
 "age": 21
}

The person message can be defined by the following schema document:

{
 "$id": "https://api.example.org/person.schema.json",

292 | Chapter 6: Distributed Data

 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "title": "Person",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "givenName": {
 "type": "string",
 "description": "The person's first name."
 },
 "familyName": {
 "type": "string",
 "description": "The person's last name."
 },
 "age": {
 "description": "Age in years. Must be equal to or greater than zero.",
 "type": "integer",
 "minimum": 0
 }
 }
}

The JSON Schema examples used in this pattern all have their addi
tionalProperties value set to false. XML-based schemas have
this as the default, too.

Adding a new property

Now assume we want to add a new property—middleName—to this person object. If
we add a new field in the schema, we run the risk of breaking existing API consum‐
ers. We’d need to make sure to roll out updates for all consuming services at the same
time. This might be possible for services where all the API consumers and producers
are maintained by the same team (or two teams in close coordination), but even this
can be tricky. Instead, we can employ the name-value pair pattern to add the new
property to the person object:

{
 "givenName": "John",
 "familyName": "Doe",
 "age": 23,
 "nvp" : [
 {"name" : "middleName", "value" : "Seymore"}
]
}

And here’s the new schema for this model:

{
 "$id": "https://example.com/person.schema.json",
 "$schema": "https://json-schema.org/draft/2020-12/schema",

6.10 Modifying Data Models in Production | 293

 "title": "Person",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "givenName": {
 "type": "string",
 "description": "The person's first name."
 },
 "familyName": {
 "type": "string",
 "description": "The person's last name."
 },
 "age": {
 "description": "Age in years which must be equal to or greater than zero.",
 "type": "integer",
 "minimum": 0
 },
 "nvp" : {
 "type" : "array",
 "items" : { "$ref": "#/$defs/nvp"},
 "description" : "List of name/value pairs.",
 }
 },
 "$defs": {
 "nvp": {
 "type": "object",
 "required": ["name", "value"],
 "properties": {
 "name": {
 "type": "string",
 "description": "The name of the property."
 },
 "value": {
 "type":["number","string","boolean","object","array", "null"],
 "description": "The value of the property."
 }
 }
 }
 }
}

Now, instead of a “strongly typed” schema for our data model, we have a “mildly
typed” approach. Any properties we wish to add to the model can be placed in the
npv array, and the resulting object will still pass validation for the published schema.

A single-access function
This two-tier approach can make it a bit challenging for services to manage when try‐
ing to locate a desired property. The question becomes: “I am looking for the middle
Name field. Is that an implicit or explicit property?” You can hide the dual nature of

294 | Chapter 6: Distributed Data

your data model with a single access function that can look in both places automati‐
cally. Here’s one example implementation in JavaScript:

// return a single property
// whether explicit or implicit
// args = {name:n,message:m,nameValuePair:p}
function find(args) {
 var a = args || {};
 var n = a.name || "";
 var m = (a.message || local.m) || {};
 var p = (a.nameValuePair || local.p) || "nvp";
 var r = undefined;

 if(m==={} || n==="") {
 r=undefined;
 }
 else {
 if(m.hasOwnProperty(n)) {
 r=m[n];
 }
 else {
 if(m.hasOwnProperty(p)) {
 try {
 r = m[p].filter(function(i) {return i.name===n})[0].value;
 }
 catch {
 r = undefined;
 }
 }
 }
 }
 return r;
}

Now, whether the property is explicit or implicit, the same function call can be used:

console.log(find({name:"givenName", message:person}));
console.log(find({name:"middleName", message:person}));

This implicit model works for complex values, too:

{
 "givenName": "John",
 "familyName": "Doe",
 "age": 21,
 "nvp" : [
 {"name" : "hatsize", "value" : null},
 {"name" : "middleName", "value" : "Seymore"},
 {"name" : "nicknames", "value" : ["J","JJ","Johnboy","Jack"]},
 {"name" : "address", "value": {"street":"123 main", "city": "Byteville",
 "state": "MD", "zip": "12345"}}
]
};

6.10 Modifying Data Models in Production | 295

Support for multiple schema versions
There’s another advantage to this pattern when you use a single-access function, as
shown previously. Since it does not matter where the property is located in the mes‐
sage, the same client application can be coded to support multiple schema instances
of the person message.

For example, your service can update the data model to make middleName an explicit
field:

{
 "givenName": "John",
 "middleName": "Seymore",
 "familyName": "Doe",
 "age": 21
};

And the same find function works as expected:

console.log(find({name:"middleName", message:person}));

Reverting models
Finally, in cases where you need to revert to a previous model/schema, you can move
properties that are explicit in one model and represent them as implicit in another
model with minimal side effects.

Discussion
This pattern is primarily designed to make it easy for services to safely support inter‐
nal data model changes over time. It is not recommended that you expose these mod‐
els directly via your service API. Instead, you should represent your resources using a
well-defined media type (see Recipe 5.3 for details).

It may seem like a good idea to simply add new explicit fields to JSON-based objects
and rely on the JSON Schema’s default behavior of ignoring additional properties
when validating objects. This, however, can lead to problems. First, JSON Schema
and XML Schema behaviors are not the same. By default, XML rejects messages with
unknown elements. Second, assuming that JSON Schema documents will always have
their additionalProperties value set to true is dangerous. Some data consumer
teams might write their own local JSON Schema that sets this value to true and start
rejecting messages with unknown properties. Finally, by adopting this explicit/
implicit model, you make it clearer to API consumers that some fields have been
added. This makes it easier for consumers to ignore them when appropriate and gives
them a clear path toward discovering new properties in the future.

If you end up supporting multiple model schemas at runtime (e.g., some previously
implicit properties are upgraded to explicit), be sure to link to the correct revision of

296 | Chapter 6: Distributed Data

the JSON (or XML) schema documents, since client applications may be relying on
schema documents at runtime (see Recipe 4.7).

This recipe doesn’t explain how to store the explicit and implicit data properties, since
the details change depending on what data format you are using. JSON documents
can be structured to fit the given example objects directly. However, in cases where
data is stored using SQL tables, you can create a table to hold the explicit fields and
then add the implicit properties in a standalone table (nameValuePairs), where each
row has an index field pointing to the explicit row along with the name and value for
that implicit property. See Figure 6-6.

Figure 6-6. Explicit table and implicit table

Accepting unknown implicit fields can be a security risk. It’s crucial
that all services that attempt to read/write data check both the
name and value contents to protect themselves from any attempt to
place dangerous values in data storage.

It is important to remember that services that support writing data using this recipe
will need to know which fields are explicit and which are implicit. An easy approach
is to keep a list of explicit fields as a guide when writing a record. If any field appears
that is not listed, you can assume it is an implicit field that should be added to the nvp
collection. You may also be able to use a local schema document to guide the write
operation.

See Also
• Recipe 3.10, “Designing for Extensible Messages”
• Recipe 3.11, “Designing for Modifiable Interfaces”

6.10 Modifying Data Models in Production | 297

• Recipe 4.7, “Using Schema Documents as a Source of Message Metadata”
• Recipe 4.14, “Validating Incoming Data”
• Recipe 5.2, “Preventing Internal Model Leaks”
• Recipe 6.1, “Hiding Your Data Storage Internals”
• Recipe 6.8, “Ignoring Unknown Data Fields”

6.11 Extending Remote Data Stores
There are times when you want to use the data from another service even though that
service does not store all the data properties you need. In cases like this, it may be
possible to extend that remote data source with your own local property storage using
an associative key.

Problem
How can you safely and effectively extend an existing data store (one that you don’t
control) with additional property values? When is this a good idea? How can you
maintain data integrity between the remote and local data stores?

Solution
In cases where you want to extend an existing remote data store with additional val‐
ues, you can establish a local data store that contains the additional values, and an
associative key that links the two data stores together.

Example
To start, let’s lay out an example remote and local data store and then make the
association.

As an example, assume you are using a remote data store that keeps track of user
Accounts. It has a uniqueId property along with a collection of other properties, such
as givenName, familyName, email, etc.:

**** REQUEST ****
GET /users/q1w2e3r4 HTTP/1.1
Host: user-accounts.example.org
Accept: application/vnd.collection+json
...

**** RESPONSE ****
HTTP/1.1. 200 OK
Host : user-accounts.example.org
Content-Type: application/vnd.collection+json
Content-Length: XXX

298 | Chapter 6: Distributed Data

{ "collection" :
 {
 "version" : "1.0",
 "href" : "http://user-accounts.example.org/users/q1w2e3r4",

 "links" : [...],
 "items" : [
 {
 "href" : "http://user-accounts.example.org/users/q1w2e3r4",
 "data" : [
 {"name": "uniqueId", "value": "q1w2e3r4"},
 {"name": "givenName", "value": "Marquis"},
 {"name": "familyName", "value": "Quarkus"},
 {"name": "email", "value": "user@example.org"}
]
 }
]
 }
}

Also assume you are creating a service that keeps track of the request history for users
of your shopping site. You want to track things like visitorId, pageUrl, dateTime,
dwellTime, etc.:

**** REQUEST ****
GET /history/p0o9i8u7/1 HTTP/1.1
Host: shopping.example.org
Accept: application/vnd.collection+json
...

**** RESPONSE ****`
HTTP/1.1. 200 OK
Host : shopping.example.org
Content-Type: application/vnd.collection+json
Content-Length: XXX

{ "collection" :
 {
 "version" : "1.0",
 "href" : "http://shopping.example.org/history/p0o9i8u7/1",

 "links" : [...],
 "items" : [
 {
 "href" : "http://shopping.example.org/history/p0o9i8u7/1",
 "data" : [
 {"name": "historyId", "value": "p0o9i8u7"},
 {"name": "pagerUrl", "value": "..."},
 {"name": "dwellTime", "value": "30000ms"},
 {"name": "dateTime", "value": "20230203T141529Z"}
]
 }
]

6.11 Extending Remote Data Stores | 299

 }
}

Finally, you want to be able to share this request history with users on demand.
Essentially, you need to merge both the userAccount and requestHistory data
properties.

A direct way to do this is to use the runtime URL of the remote data store (http://
user-accounts.example.org/users/q1w2e3r4) as the associative key and add that to the
local record:

**** REQUEST ****
GET /history/p0o9i8u7/1 HTTP/1.1
Host: shopping.example.org
Accept: application/vnd.collection+json
...

**** RESPONSE ****`
HTTP/1.1. 200 OK
Host : shopping.example.org
Content-Type: application/vnd.collection+json
Content-Length: XXX

{ "collection" :
 {
 "version" : "1.0",
 "href" : "http://shopping.example.org/history/p0o9i8u7/1",

 "links" : [...],
 "items" : [
 {
 "href" : "http://shopping.example.org/history/p0o9i8u7/1",
 "data" : [
 {"name": "historyId", "value": "p0o9i8u7"},
 {"name": "pagerUrl", "value": "..."},
 {"name": "dwellTime", "value": "30000ms"},
 {"name": "dateTime", "value": "20230203T141529Z"},
 {"name": "associativeKey",
 "value": "http://user-accounts.example.org/users/q1w2e3r4"}
]
 }
]
 }
}

Now, when you want to construct a resource that includes both your locally stored
data and fields from the remote data source, you just need to use the associativeKey
in your local store to retrieve the related data.

300 | Chapter 6: Distributed Data

http://user-accounts.example.org/users/q1w2e3r4
http://user-accounts.example.org/users/q1w2e3r4

Discussion
It is possible that the remote service may not respond when you attempt to retrieve
the associated resource. In this case, you may be able to use a local copy (see Recipe
6.9) instead.

It is also possible that the remote service is up and running but unable to find the
resource you are requesting. For example, that resource might have been deleted. In
this case, your service needs to either supply default data to replace the missing infor‐
mation, or return a 400-level response telling the calling application that the informa‐
tion is no longer available. If the local data is no longer useful when the remote
resource is missing, you can delete your local data associated with that record.

Just because a remote service reports 404 does not mean that the
data has been deleted. It may just be temporarily missing. Don’t be
too quick to delete your local data if the remote service reports a
4xx level response. If, however, the remote service responds with a
410 Gone, you can be confident this condition is permanent.

It is not a good idea to create local data properties with the same name as properties
in the remote data store. For example, if the remote resource has an email field that
contains the user’s personal email address (marquis@example.org) and you want to
store a work email instead (work@example.org), don’t create a local email property
with the desired value. Instead, create a uniquely named local property (workEmail)
and use that to hold your value.

Even if your local service displays a single resource that is a mix of both local and
remote properties, it is not a good idea to try to enforce any data integrity for the
combined record. For example, you might want to enforce a rule that any local
resource that has an email property also must have a fullName property. If one of the
properties is part of the remote resource (email) and the other is part of the local
resource (fullName), you can’t be assured that both records will enforce the same
rules.

But My Schema!?!
In cases where service interfaces are returning responses made from multiple sources,
using schema documents to validate messages gets complicated quickly. This is espe‐
cially true if you are using a storage service that supports field selection (e.g., OData,
GraphQL, etc.). See Recipes 4.12 and 4.13 for more on using schema documents for
APIs.

6.11 Extending Remote Data Stores | 301

mailto:marquis@example.org
mailto:work@example.org

It is rarely a good idea to use your local resource to hold copies of the values of some
remote resource properties. The values of the remote properties might change, and
your local service will not know about the updates. See Recipes 6.9 and 6.13 for more
on this topic.

Over time, it is likely that your local data store will contain resources with “broken”
associations—the associativeKey URL returns a 4xx or 5xx status. If needed (e.g., to
recover space), you can create a job or script that crawls your local data store and
removes any local records that no longer have remote associations. However, it is
often important to retain your local data (to keep a complete history, etc.), and in that
case, your local service should just ignore the association and/or replace the values
with the local default (e.g., “No Longer Available,” etc).

See Also
• Recipe 3.10, “Designing for Extensible Messages”
• Recipe 3.11, “Designing for Modifiable Interfaces”
• Recipe 4.11, “Validating Data Properties at Runtime”
• Recipe 4.12, “Using Document Schemas to Validate Outgoing Messages”
• Recipe 4.14, “Validating Incoming Data”
• Recipe 6.1, “Hiding Your Data Storage Internals”
• Recipe 6.9, “Improving Performance with Caching Directives”

6.12 Limiting Large-Scale Responses
For data services that get a large amount of traffic and/or serve up lots of content,
limiting the size of the responses can be an effective way to support API clients “at
scale.” Conversely, failing to regulate the size and/or count of data returned from
queries against large data sets can easily bog down your data service and, if this is a
critical data set, adversely affect many other dependent services.

Problem
How can you make sure query responses from data-centric services remain respon‐
sive even as the data set grows? What are common controls to the size of the data
collections returned? When is it important to impose limits on returns from large
data sets?

302 | Chapter 6: Distributed Data

Solution
The best way to ensure that your service interface for data-centric services does not
suffer performance problems as the data set grows is to limit the number of records
returned in HTTP responses. The proper way to do this is to set (and properly docu‐
ment) a default maximum records value for all data queries. Even if the backend data
service does not already set limits on response collections, it is a good idea for you to
implement response limits for the service interface that stands between the API client
and the underlying service.

This recipe addresses the ability to limit returns in a query to
underlying data stores. You can also use the page navigation recipe
(Recipe 7.11) to implement a more interactive way to control query
returns for large data sets.

Most data engines support the ability to limit the number of records returned in a
single response. For example, OData supports the $top directive and the maxpage
size setting. GraphQL supports the use of first:nn. SQL supports the TOP and
LIMIT directives. And Lucene has the rows query parameter. So, for cases where your
service interface is crafting the query for the underlying data service, you can make
sure to employ these settings in your data requests.

You should always include a maximum value in your queries to
data storage, and you should always replace any client-supplied
limit values that are out of range (e.g., set too high). Sending data
queries without indicating a maximum record count can introduce
performance and possibly security problems.

You can make the return limit a part of the query that API clients commit (in other
words, allow API clients to determine the limit value). You can also set the limit value
within the service interface before you send the query to the underlying service
(essentially you edit the client query before sending it). It is also possible (but a bit
more work) to support both options. That is, to allow API clients to set the limit
value and, once submitted to the service interface, that code can look for the limit
value. If the limit value does not exist, the code can insert the default value; or if the
limit value does exist but is outside of acceptable limits (e.g., set to 10,000,000), the
service interface code can modify the value accordingly.

In cases where the underlying data source does not support a maximum count set‐
ting, you will need to implement your own return limits at the service interface level.
That means accepting the return collection from the underlying data source and then,
if needed, truncating the collection at the maximum record count.

6.12 Limiting Large-Scale Responses | 303

Whether you communicate the limits via the actual query to the
data store or implement the limit by truncating the collection
returned to the API caller, you should always indicate the use of the
limit value in the query metadata (see Recipe 6.5) returned to the
API caller.

Example
There are two ways to implement return count limits on data-centric service
interfaces:

DirectLimit

Include the limit directive in the data query sent to the data store.

TruncatedLimit

Truncate the resulting data collection within the service interface.

Next up are examples of each method.

Implementing direct limits
The easiest way to support direct limits is to simply allow API client applications to
send in the proper directives with each data query. For example, here’s a query using
the Solr search engine. Note the use of the limit=100 setting:

**** REQUEST ****
GET /persons/search/?q=%22Bob%22&rows=100 HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Q-Status=success
Q-Returned=100
Q-Count=10000
...

In this example, the rows=100 query parameter was sent by the client application to
the service interface. But there will be times when the client application does not send
the limit value. In that case, it is up to the service interface to send the limit value to
the data store. Here is an example using the OData engine:

**** REQUEST ****
GET /persons/search/?$search=%22Bob%22 HTTP/1.1
Host: api.example.org
Accept: application/vnd.collection+json

**** RESPONSE ****
HTTP/1.1 200 OK

304 | Chapter 6: Distributed Data

Content-Type: application/vnd.collection+json
Q-Status=success
Q-Sent=$search=%22Bob%22
Q-Executed=$search=%22Bob%22$top=100
Q-Returned=100
Q-Count=10000
...

Note the use of the q-sent and q-executed query metadata values (see Recipe 6.5).
In cases where the service interface modifies the client query before sending it to the
data store, these two metadata properties should be returned as either HTTP headers
or as part of the response body.

Implementing truncated limits
There will be times when the service interface has to communicate the maximum
return limit from a data query. Sometimes this maximum value is hardcoded into the
data store, and sometimes the data store has no maximum limits at all. In both cases,
it is important for the service interface to protect itself against return sets that are “too
large” (whatever that means for the client making the query). This usually means
adding support for truncating the data collection returned from the data store (in the
API code) before sending the results to the client application.

Implementing data set truncation at the service interface layer will vary based on the
programming languages, return formats, and other factors. A crude solution is to
simply walk through the returned collection and retain the maximum number of
records to return:

function executeQuery(dataStoreAddress, dataQuery) {
 var ix=0;
 var maxLimit=100;
 var responseCollection = [];
 var dataCollection = httpRequest(dataStoreAddress, dataQuery);
 for (let item of dataCollection) {
 if(ix>maxLimit) {
 break;
 } else {
 responseCollection.push(item);
 }
 ix++;
 });
 return responseCollection;
}

In some cases, you may be able to retain the complete collection
and implement local page navigation against the saved data collec‐
tion. See Recipe 7.11 for details.

6.12 Limiting Large-Scale Responses | 305

Once the service interface has created its own local copy of the collection (limited to
the maximum allowed record count), the API can return the results shown in the
direct limit example:

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Q-Status=truncated
Q-Returned=100
Q-Count=10000
...

Note the use of the q-status=truncated metadata property to help the API client
understand the meaning of the results.

Discussion
The safest approach for implementing data request limits is to set the limit in the API
code using the parameters in the underlying query language. If you allow client appli‐
cations to set the limit value, always check it to make sure it does not fall outside
acceptable limits (e.g., set to -100 or 1000000).

Using the truncated limit approach has its drawbacks. For example, you do not get to
control how large a data set may be returned to you from the underlying data source.
Even if your API limits response collections to 100 records, you may still need to wait
for the underlying (unlimited) data source to search for and return 100,000 records
before you can implement your internal truncation routine. In the case of very large
return sets, your API performance is likely to suffer.

Limits Are Not Pages
It is important to not confuse query limits (like the ones discussed here) with page
sizes (covered in Recipe 7.11). For example, you might set your API query limit to
1,000, and the client application might set its page-size value to 100. In that case, the
client will be expecting no more than 100 records in any single returned response.

Whenever you modify a direct limit query or invoke a truncated limit on a return set,
you should communicate this information back to the requesting application (pref‐
erably using query metadata [Recipe 6.5]).

See Also
• Recipe 4.10, “Supporting Links and Forms for Nonhypermedia Services”
• Recipe 4.15, “Maintaining Your Own State”

306 | Chapter 6: Distributed Data

• Recipe 5.11, “Supporting Service Health Monitoring”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 6.6, “Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries”
• Recipe 7.11, “Enabling Standard List Navigation”
• Recipe 7.15, “Synchronous Reply for Incomplete Work with 202 Accepted”

6.13 Using Pass-Through Proxies for Data Exchange
There are times when services want to edit a subset of the fields in a stored record
(e.g., the address data in a person record). In these cases, it is important to make sure
that changes to the subset of fields does not result in invalidating the data in the com‐
plete record. At the same time, “upstream” clients do not need to know the details of
the source (“downstream”) services. This is where the pass-through proxy recipe can
help.

Problem
How can you maintain data storage integrity when other services want to edit just a
portion of your storage record? When updating a partial set of data fields in a record
(e.g., the address fields in a person record), what can you do to make sure the full set
of fields in the record contain no conflicts? And when you discover internal data
inconsistencies, what response should you return to the service attempting the inva‐
lidate update?

Solution
A good rule to follow is to always pass complete storage data records back and forth
between services. This is the easiest, most reliable way to ensure information integrity
of the record. Even if there is a service that wants to edit just a portion of the record
(for example, the address portion of a person record), that service should be sent a
complete record, modify the portion of the record it wants to work with, then return
the entire record to the data service for validation and storage.

In cases where the consuming service is an intermediate (or pass-through) service
between two other parties, (e.g., an address service that exchanges data with a person
service), that service should still exchange complete records with the person service.
This can be done by reading a person record, extracting the address portion to send
along, holding on to the related person record, and, upon receiving the updated
address information, loading the address data into the held person record and send‐
ing that back to the person service. Of course, the address service needs to be

6.13 Using Pass-Through Proxies for Data Exchange | 307

prepared for a failed write to the person service and report that back to the address
consumer when appropriate.

It’s Turtles All the Way Down
The example given here (person and address) is a reminder that API consumers can
never be certain whether they are talking to a “pass-through” service or “storage” ser‐
vice. In fact, you can imagine another service called the telephone service that allows
consumers to update the telephone value of an address record. Now we have three
layers to deal with (telephone, address, and person). For all we know, the person
service may be changed in the future from a “storage” type to a “pass-through” type.
That would be four layers of data exchange.

Services that are built to edit subsets of data (address for a person) may be limited to
updates and not be able to support create or delete actions. For example, the only way
to create an additional address or remove an existing address for a person is to use
the person service directly.

Note that it is a good idea to keep track of update metadata when exchanging subsets
of records. See Recipe 6.5 for details.

Example
Figure 6-7 is a sequence diagram that gives you an omniscient view of how the three
services interact in our example. Of course, each participant (apiClient, addressAPI,
and personAPI) only knows about its direct neighbors. For example, apiClient only
knows about addressAPI, personAPI only knows about addressAPI, and addressAPI
knows about both other parties.

308 | Chapter 6: Distributed Data

Figure 6-7. Pass-through data recipe

The following is an example of an address service interacting with the person service
to support updating the address subset info for a person.

First, the address service receives a request for a record:

**** REQUEST ****
GET /q1w2e3r4 HTTP/1.1
Host: api.address.org
Accept: application/vnd.collection+json

The address service then needs to contact the person service for a record:

**** REQUEST ****
GET /q1w2e3r4 HTTP/1.1
Host: api.person.org
Accept: application/vnd.collection+json

**** RESPONSE ****
HTTP/1.1 200 OK

6.13 Using Pass-Through Proxies for Data Exchange | 309

Content-Type: application/vnd.collection+json
Content-Length: nn
ETag: "w\p0o9i8u7y6"
...

{"collection" : {
 "title": "Person Service",
 "links": [...],
 "items": [
 { "href": "https://api.person.org/q1w2e3r4",
 "data": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "fullName", "value": "Mork Markleson"},
 {"name": "streetAddress", "value": "123 Main St"},
 {"name": "cityTown", "value": "Byteville"},
 {"name": "stateProvince", "value": "MD"},
 {"name": "postalCode", "value": "12345"}
]
 }
]
}}

Now the address service can store a copy of the person record locally (be sure to
store the response headers, too) and then respond to the caller with the subset of
address fields:

**** RESPONSE ****
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
Content-Length: nnn
ETag: "w\y6t5r4e3w2"

{ "collection" : {
 "title": "Address Service",
 "links": [...],
 "items": [
 { "href": "https://api.address.org/q1w2e3r4",
 "data": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "street", "value": "123 Main St"},
 {"name": "municipality", "value": "Byteville"},
 {"name": "region", "value": "MD"},
 {"name": "zipCode", "value": "12345"}
]
 }
],
 "template": {
 "rel": "edit",
 "data": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "street", "value": "123 Main St"},
 {"name": "municipality", "value": "Byteville"},
 {"name": "region", "value": "MD"},

310 | Chapter 6: Distributed Data

 {"name": "zipCode", "value": "12345"}
]
 }
}}

There are a couple of things to notice here. First, the address service has generated
its own ETag value, one that matches the address representation. This can be used in
case more than one party attempts to update this record (see Recipe 6.2 for details on
the lost update problem).

In this example, both the address service and the person service
use the same id value and use that value in the URL. This is not
always the case and should be taken into account. You may need to
keep track of two different identifiers and two separate URLs when
working as a pass-through service.

Second, note that the field names used by the address service do not need to be the
same as those used by the person service. It is handy if they are, but quite often we
don’t control these things and a translation step is needed to pass data from one party
to the next.

Next, the address service can wait for someone to send an update record back:

**** REQUEST ****
PUT /q1w2e3r4 HTTP/1.1
Host: api.address.org
Content-Type: application/vnd.collection+json
Content-Length: nn
If-Match: "w\y6t5r4e3w2"
...

"template": {
 "data": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "street", "value": "123 Main St, Apt 3G"},
 {"name": "municipality", "value": "Byteville"},
 {"name": "region", "value": "MD"},
 {"name": "zipCode", "value": "12345-6789"}
]
}

Then the address service must load the data from the caller into its own local copy of
the person record and pass that along to the person service:

**** REQUEST ****
PUT /q1w2e3r4 HTTP/1.1
Host: api.person.org
Content-Type: application/vnd.collection+json
Content-Length: nn

6.13 Using Pass-Through Proxies for Data Exchange | 311

If-Match: "w\p0o9i8u7y6"
...

"template": {
 "data": [
 {"name": "id", "value": "q1w2e3r4"},
 {"name": "fullName", "value": "Mork Markleson"},
 {"name": "streetAddress", "value": "123 Main St, Apt 3G"},
 {"name": "cityTown", "value": "Byteville"},
 {"name": "stateProvince", "value": "MD"},
 {"name": "postalCode", "value": "12345-6789"}
]
}

**** RESPONSE ****
HTTP/1.1 204 No Content

Assuming all goes well, the person service returns a 2xx response to the address ser‐
vice, and the address service does the same to its caller.

If, however, there was a problem writing to the person service, the appropriate status
code will be returned to the address service and then passed along to the caller:

**** RESPONSE ****
HTTP/1.1 412 Precondition Failed
Content-Type: application/vnd.collection+json
Content-Length: nn

{"collection": {
 "title": "Person Service",
 "links": [...],
 "error": {
 "title": "Unable to update record",
 "code": "http://api.person.org/reasons/precondition",
 "message": "The record you are trying to update has been changed.",
 "data" [{"name": "id", "value": "q1w2e3r4"}]
 }
}}

You may need to alter the error information depending on the type of error and
where in the chain (storage service, pass-through service) you are reporting.

Discussion
The concept of a pass-through data interface is only important to the interface that is
acting as a proxy between two services (as in the preceding address service example).
Consumers of pass-through proxies don’t need to know anything about the pass-
through nature of the target service. The same goes for any service interface that is
behind the pass-through proxy.

312 | Chapter 6: Distributed Data

As an alternative to the pass-through proxy recipe, services can
ignore unknown data fields (see Recipe 6.8).

A key element of this recipe is to be sure that pass-through proxies keep track of the
connection between the “downstream” (source) record and the “upstream” (exposed)
record. To do this, be sure to always store a complete copy of the “downstream”
record, including metadata fields such as ETag and other related resource integrity
information. The best way to do that is to store the complete HTTP response, not just
the body. See Recipe 6.5 for details.

As an implementation detail, it is always a good idea for the pass-through proxy to
use a translation step to handle any differences between the data property list for the
proxy interface and the data property list for the source service:

function fetchPerson(url,propertyMap) {
 var personRecord = person.read(url);
 var addressRecord = mapProperties(personRecord, propertyMap)
 return addressRecord;
}

The mapProperties(personRecord, propertyMap) step does the work of pulling the
expected fields from the source (“downstream”) record and constructing a valid
exposed (“upstream”) record. In some cases this is not just a one-to-one renaming of
data properties (person.givenName = +address.firstName). In some cases, fields
are combined or split between interfaces:

var address.fullName = person.familyName+ ", "+ person.givenName

Source Today, Pass-Through Tomorrow
Since we don’t control all the services on the web, we can’t always know whether an
interface is connected to a data source service or a data pass-through service. In fact, a
service might start as a data source and later become a pass-through. From the inter‐
face point of view, it doesn’t matter. Interfaces should continue to make promises
about message exchanges independent of the implementation details of the services
behind that interface.

Pass-through proxies need to be prepared for cases where a poorly managed “down‐
stream” source will change its response (e.g., add/remove/rename data fields). This
can’t be prevented, but you can mitigate the problem by always inspecting the incom‐
ing downstream record to make sure it contains the data properties the “upstream”
interface has promised. If not, the pass-through proxy should return a 502 Bad Gate
way response with a body indicating the problem:

6.13 Using Pass-Through Proxies for Data Exchange | 313

**** REQUEST ****
GET /q1w2e32r4 HTTP/1.1
Host api.address.org
Accept: application/vnd.collection+json
...

**** RESPONSE ****
HTTP/1.1 502 Bad Gateway
Content-Type: application/vnd.collection+json
Content-Length: nn
...

{"collection": {
 "links": [...],
 "error": {
 "title": "Invalid Response",
 "code": "SRC-077",
 "message": "Data source is missing the [givenName] data property"
 }
}}

Note that in this example, only the details related directly to the current interface
exchange (client and address service) are included in the status report. There is no
mention of the “downstream” source (person service).

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 3.10, “Designing for Extensible Messages”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.17, “Using Semantic Proxies to Access Noncompliant Services”
• Recipe 6.1, “Hiding Your Data Storage Internals”
• Recipe 7.20, “Using Workflow Proxies to Enlist Noncompliant Services”

314 | Chapter 6: Distributed Data

CHAPTER 7

Hypermedia Workflow

Productivity is never an accident. It is always the result of a commitment to excellence, intel‐
ligent planning, and focused effort.

—Paul J. Meyer

For many, the ultimate goal of creating service interface APIs is to foster flexible and
robust workflow solutions that mix existing services in unique ways to solve new
problems. In fact, this goal is embodied in the keystone principle discussed in
“Shared Principles for Scalable Services on the Web” on page 16. The process of link‐
ing services together is not a great challenge when these services were designed from
the start to work in concert. However, enlisting services that were not built as a
group, know nothing of each other, and are oblivious to the solution being created is
a much bigger challenge. This second approach depends on important implementa‐
tion details that make a number of activities possible, such as sharing solution state,
progressing through multiple steps to accomplish a goal, and tracking/displaying that
progress. Anytime you mix service interfaces together, there is a chance of execution
errors that might require rerunning some steps, undoing others, and knowing when
this is needed.

Often, we build our own services as a related collection. In fact, if the same team is
building more than one service, those services are bound to have hidden dependen‐
cies that are difficult to untangle. Keeping this tangle at bay takes discipline, design,
and determination.

The bad news is that designing and supporting successful workflow on the web
requires additional effort. The good news is that, as long as you implement each indi‐
vidual service with a simple API and establish a general processing and tracking
model that all services support, you can create a resilient, flexible, and evolvable
workflow environment that clients can safely use to solve new and interesting
problems.

315

For more background on the important elements of a well-
designed and -implemented workflow on the web, see “Empower‐
ing Extensibility with Hypermedia Workflow” on page 46.

Supporting a hypermedia workflow (see Figure 7-1) means focusing on common pat‐
terns like page navigation, works in progress, most recently used, etc. It also means
supporting a generalized hypermedia-driven workflow via jobs and tasks, along with
some optimization techniques to keep things flowing. Finally, there is a second-level
set of activities centered around managing the workflow process itself. These four ele‐
ments (patterns, generalized flow, optimization, and management) make up a healthy
hypermedia workflow system.

Figure 7-1. Hypermedia workflow recipes

This chapter contains two types of recipes. The first type is a set of common work‐
flows like list navigation, work-in-progress patterns, forms handling, and similar pat‐
terns (Recipes 7.8 to 7.14). You can use these prototype patterns as a guide when you
create your own semantic profiles (Recipe 3.4) for your service interfaces.

The second set of recipes here describe a general workflow interaction language that
you can use to enlist selected independent services and track the progress of these
multiple-service solutions. This is a much more abstract set of patterns that cover
everything from how you can design in workflow support for your services to the
actual implementation of workflow-compliant services.

316 | Chapter 7: Hypermedia Workflow

Finally, you’ll find several entries here that detail general principles and patterns for
dealing with coordinating and managing these services. These include dealing with
errors, rollbacks, and even some internal patterns to help scaling and proxying other
service interfaces.

You’ll find that many of the recipes in this chapter depend upon, or
call back to, other recipes from earlier in the book. If you skipped
over those chapters, this is a good time to follow the threads back
to see where some of these workflow-solution recipes have their
roots.

7.1 Designing Workflow-Compliant Services
A shared goal of many service interface designers is the ability to easily connect mul‐
tiple services to form a workflow. These are often called composable services. This
recipe describes a set of basic design features every workflow-compliant (composa‐
ble) service should have.

Problem
What does it take to design a workflow-compliant service? What are the key features
every composable service interface shares? How can you make it safe, cheap, and easy
to implement workflow using these composable services?

Solution
The key to designing workflow-compliant services is to offer a consistent set of
actions and make it easy to share state data among services. These elements—shared
actions and shared state—are at the heart of stable, composable service interfaces.

In addition to a shared set of actions and state data, workflow-compliant services
support shared identifiers for the job (as correlation-id) and as each task within the
workflow job (as request-id).

Workflow actions
In hypermedia-driven services, actions are expressed at input forms. Each form
describes all that is needed to complete the action: the URL, the HTTP method, the
supported media types, and the complete set of inputs.

See Recipe 7.12 for details on how to design better forms.

7.1 Designing Workflow-Compliant Services | 317

While actions can be very specific (e.g., onboardCustomer, computeSalesTax, etc.),
they can also be generic (writeRecord, filterData, etc.), but they must be com‐
pletely described with all the inputs and related HTTP metadata included (see the
“Example” section).

The list of actions also needs to support the following:

Execute
The actual work to be done (e.g., applySalesTax).

Repeat
Repeat the work again in an idempotent manner (e.g., applySalesTax can be
safely repeated and still be the same expected results).

Revert
The ability to undo a completed action (e.g., revertSalesTax).

Continue
The ability to stop a workflow and then, after some pause, continue where you
left off to complete the work.

Rerun
The ability to start from the beginning of a set of tasks in a workflow and rerun
all the steps even if the workflow has been run before.

It is a good idea for all workflow-compliant services to support all
these actions, even if the action doesn’t “do anything” (e.g., no sup‐
port for Revert). That will make supporting them easier over time.

All these actions should have an associated URL and an associated FORM. The first
three actions apply to each step (referred to here as a task) within a workflow. The last
two items apply to the complete set of tasks (called a job).

Shared state
Two other actions that are needed for workflow-compliant service interfaces are:

ReadState
The ability to load up related state properties for use by each task in the job.

WriteState
The ability to store the related state properties for use by other tasks within the
same job.

318 | Chapter 7: Hypermedia Workflow

See Recipe 7.2 for details on how to handle shared state for HTTP
workflows.

Both actions need an associated URL that points to a shared HTTP resource. This
resource URL should be passed to each task in the workflow. It is up to each service to
know how to recognize state values in the state resource and, when needed, update
existing properties or add new properties to the state resource. Often, the properties
in this resource are used to fill in the FORMS exposed by the composable service’s
actions.

For an example of a generic workflow engine via a job control lan‐
guage, see Recipe 7.6.

Correlation IDs for tasks and jobs
Each workflow job and each task within that job needs unique identifiers, typically a
UUID or some other globally unique value. The jobID value should be used as the
correlation identifier. This can be passed in the HTTP correlation-id header. The
taskID value should be used as the request identifier. This can be passed in the HTTP
request-id header. Like the correlation-id, the request-id should be included in
both the HTTP request and the HTTP response.

The correlation-id and requestid headers are not standard, reg‐
istered header values. Your organization might use some other
header values or possibly even a different way to properly track
workflow jobs and tasks. Whatever your organization does, the key
to success is consistency and good documentation.

Workflow-compliant services support both correlation-id for the job and request-
id for each task in the job.

Example
Consider a composable service that computes sales taxes for a shopping cart of goods.
This service (along with other workflow-compliant services) can be used as a task in a
job to handle checking out from a shopping site. The following is an imaginary DSL
example of what that might look like:

7.1 Designing Workflow-Compliant Services | 319

*** Checkout Job

READ sharedState WITH urlState
EXECUTE shoppingCartService->checkOutForm WITH sharedSTATE
IF-NOT-OK EXIT
EXECUTE salesTaxService->applyTaxesForm WITH sharedSTATE
IF-NOT-OK EXECUTE shoppingCartService->revertCheckoutForm WITH sharedSTATE
STORE sharedState WITH urlState
EXIT

*** End Job

In this example, the sharedState is loaded into the client application. That applica‐
tion then attempts to execute the shoppingCartService→checkOutForm and the
salesTaxService→applyTaxesForm, and then store the resulting sharedState. Note
the support for the shoppingCartService→revertCheckoutForm in case something
goes wrong when applying the sales taxes.

Discussion
Any service interface that offers an action that writes data to the shared state should
offer a way to reverse that action. This may be as simple as restoring the old values in
the shared state resources (as in our applySalesTax example) or as complex as
launching another job to undo some set of steps related to the action that needs to be
reversed. See Recipe 7.6 for more discussion on handling related jobs.

Service interfaces for each task should support calls to Repeat and Revert even if the
Execute action has not yet been called. For example, calls to Revert should not result
in an error (unless the actual revert action experiences a problem). This means serv‐
ices should “know” whether the Execute action has been previously completed. If yes,
the calls to Revert will likely require some processing. If the Execute action was not
yet completed, calls to Revert should just return 200 OK without any processing.
Think of Revert like a DELETE action. Deleting an already-removed resource doesn’t
create any new problems, so a return of 200 OK is an acceptable response.

Revert Them All
If any task fails or times out (e.g., reaches taskMaxTTL), the job is invalid and the
Cancel action should be called. This should result in a call to Revert all the tasks in
the job. This vastly simplifies implementing cross-service rollbacks or undo (see
Recipe 7.17).

320 | Chapter 7: Hypermedia Workflow

Support for the Repeat of an action should be easy to handle since (as discussed in
Recipe 3.6) all service actions should be idempotent. If you find you’re having trouble
safely repeating an action, you probably have a nonidempotency problem to
untangle.

Support for shared state means that each job has a state document that is passed
between tasks within the job. It might seem like a better idea to use a database record
for shared state, but it is not. Shared state should be supported as a standalone HTTP
resource that supports idempotent updates and possibly varying representation
media types. This is the only set of properties that should be shared between services
in a job. See Recipe 3.7 for more on this topic.

If there are many steps in a job (some of which might take lots of time), and that job
gets stopped for some reason (e.g., problems with one of the tasks that needs to be
fixed by a person), then the ability to Continue where the job left off is very useful. It
can save time and computing resources.

Support for the Rerun action is handy when you want to force-restart a job that has
multiple tasks. For example, you might find that after running a job, you notice that
the results are not quite what you expected. You might be able to fix some state infor‐
mation and then rerun the complete job to get the proper results.

Although not covered here, you can create job templates where the tasks are the same
but the contents of the shared state resource vary. This makes it possible to quickly
define and run jobs based on configuration data (via the shared state resource). If you
plan to do a lot of this kind of work, see Recipe 7.6 for an example of a generic REST‐
ful job control language that makes defining and running jobs easier.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 6.13, “Using Pass-Through Proxies for Data Exchange”
• Recipe 7.2, “Supporting Shared State for Workflows”
• Recipe 7.6, “Supporting RESTful Job Control Language”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”
• Recipe 7.17, “Supporting Local Undo or Rollback”

7.1 Designing Workflow-Compliant Services | 321

7.2 Supporting Shared State for Workflows
Workflow-compliant services need to support the ability to share state properties
between services. This recipe defines a simple and effective way to share state without
the need to share domain-specific data or data models.

Problem
How can you design services to safely share data between each other without creating
unnecessary tight coupling to data models or domain-specific service information?
What does a minimum design for shared state look like?

Solution
The most straightforward way to share data between services is to use a shared state
resource. This is a standalone HTTP resource that contains all the data related to a
workflow job. Each workflow-compliant service that is responsible for a task in the
job should be able to read and, in some cases, write to that shared state resource.

Usually, this shared state resource is used by services as a source for filling in HTTP
FORMS that describe an action (e.g., onboardNewUser). Sometimes, the results of an
action (e.g., applySalesTax) are written to the shared state resource.

Once the job is completed, this shared state resource should be archived for possible
later reference.

This shared state resource is not the same as the workflow progress
resource (see Recipe 7.7). You will need both when implementing a
robust HTTP workflow system.

An easy way to create shared state resources is to use a unique identifier (usually the
job identifier) as the public URL of the resource:

<link rel="sharedState" href="http://api.example.org/shared-state/u7y6t5r4e3 />

This URL should be passed around with each HTTP request and response related to
the job being executed.

Example
You can pass the URL for the shared state resource as part of the HTTP header
collection:

**** REQUEST ****
GET /onboarding/job1

322 | Chapter 7: Hypermedia Workflow

Accept: application/vnd.collection+json
Link: <http://api.example.org/state/q1w2e3r4t5>>;rel="sharedState"

**** RESPONSE ****
200 OK
Content-Type: application/vnd.collection+json
Length: XX

{"collection" : {
 {"title": "Pricing Update Job q1w2e3r4t5",
 "links" : [...],
 "items" : [...]
}}

Or you can pass the shared state URL as part of the message body:

**** REQUEST ****
GET /onboarding/job1
Accept: application/vnd.collection+json

**** RESPONSE ****
200 OK
Content-Type: application/vnd.collection+json
Length: XX

{"collection" : {
 {"title": "Pricing Update Job q1w2e3r4t5",
 "links" : [
 {"rel": "sharedState", "href": "http://api.example.org/state/q1w2e3r4t5"}
],
 "items" : [...]
}}

The shared state resource can be “primed” with data before the job is started. For
example, if you are running a job to update the prices of a select set of items in your
warehouse, you can load an array of product identifiers along with price increase
information into the shared state resource:

{"collection" : {
 "title" : "Shared State for Job ID q1w2e3r4t5",
 "links" : [
 {"rel":"read, sharedState",
 "href": "http://api.example.org/shared-state/q1w2e3r4t5"},
 {"rel": "create, sharedState",
 "href": "http://api.example.org/shared-state/q1w2e3r4t5/form"}
 {"rel": "filter, sharedState",
 "href": "http://api.example.org/shared-state/q1w2e3r4t5/search"}
],
 "items" : [
 { "id": "pid-00122356",
 "href": "http://api.example.org/shared-state/q1w2e3r4t5#pid-00122356",
 "data": [
 {"name": "currentPrice", "value": "10"},

7.2 Supporting Shared State for Workflows | 323

 {"name": "updatedPrice", "value": "11"},
 {"name": "state", "value": "pending"},
 {"name": "text", "value": ""}
]
 },
 {...}
]
}}

Once the document is loaded, the job can be started. Here is the pseudocode:

FOR-EACH item in http://api.example.org/shared-state/q1w2e3r4t5
 updatePrice(item)
END-EACH

In this case, the item is read, the function (updatePrice) uses the item data to look
up the product in the catalog, and (assuming the currentPrice agrees with the one
in the shared state document) the updatedPrice is applied. The shared state docu‐
ment is then modified to indicate the status of the work (e.g., from pending to comple
ted), and any notes are supplied in text (e.g., “applied successfully” or “currentPrice
does not agree,” etc.).

Each time the job completes a loop and modifies the shared state document, it should
write the updated document to the same URL (using an idempotent HTTP PUT). This
will make sure to most accurately record the state of the work in progress. This makes
it easy to support the progress resource (see Recipe 7.7) and helps in diagnosing any
problems encountered along the way (see Recipe 7.18).

Once the work is completed, the resulting shared state resource can be archived for
later reference.

Discussion
In the preceding example, the data properties (currentPrice, updatedPrice, status,
and text) must be semantic identifiers that are agreed upon ahead of time. This is
typically handled through a shared vocabulary (see Recipe 3.3).

Note that in the preceding example, the task was described using idempotent lan‐
guage. For example, the target property of the change is expressed as updatedPrice
and not percentIncrease. This makes supporting repeating and reverting changes
much easier.

You might think a simple name-value pair document is all that is needed for your
shared state resource. This may work, but it is much better to include lots of metadata
to help services keep track of what work needs to be done and how much has been
completed. Whenever possible, make your shared state resource a full-fledged HTTP
resource, not just a serialized data file.

324 | Chapter 7: Hypermedia Workflow

Often, you will need to use the shared state document as a source for filling in a data
input form for another service. The easiest way to do this is to write a mapping func‐
tion that takes the form and the shared state data as inputs, and applies the shared
state properties to the form automatically:

var sharedState = httpRead("http://api.example.org/state/q1w2e3r4t5");
var inputForm = httpRead("http://api.example.org/users/onboardingform");
var completedForm = propertyMap(sharedState, inputForm);
var results = httpExecute(completedForm);

One of the advantages of the shared state recipe is that, over time, you can add new
state data to the document without needing to update any existing services that rely
on the resource. Each service can use the contents of the state resource as it sees fit.
This loosens the coupling between the services and the state, and leads to a more
configuration-based kind of implementation.

See Also
• Recipe 3.7, “Enabling Interoperability with Inter-Service State Transfers”
• Recipe 4.15, “Maintaining Your Own State”
• Recipe 5.14, “Increasing Throughput with Client-Supplied Identifiers”
• Recipe 6.11, “Extending Remote Data Stores”
• Recipe 7.1, “Designing Workflow-Compliant Services”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

7.3 Describing Workflow as Code
When you want to enlist multiple service interfaces to compose a single solution, you
need some way to describe the list of services and the ways they can interact. There
are multiple approaches. This recipe shows the simplest method: source code behind
a solution interface.

Problem
What is the least complicated way to compose a solution with multiple existing inde‐
pendent service interfaces using service component source code? When does it make
sense to use source code instead of some other, more abstract and flexible approach?

Solution
When you have a rather simple workflow solution and/or one that will not change
over time and does not support customization, it usually makes sense to describe that
workflow solution using source code within a single service interface. That means

7.3 Describing Workflow as Code | 325

creating an interface that has all the features of your desired solution and then,
behind the interface, using source code to enlist and execute other remote services to
complete the work.

In this way, you present a stable, straightforward API for the consumer applications
and allow yourself maximum design and build flexibility behind that stable interface.
Over time, the enlisted services might change their own APIs or you might replace
one service (e.g., the taxComputation service) with another one (e.g., newTaxComputa
tion). As long as you do not change the external interface, you can make substantial
changes to the internal implementation without breaking your promise to the solu‐
tion consumers. See Recipe 5.2 for details.

Example
Consider an organization that needs to support an onboarding workflow for new
employees. Let’s also assume that, independently, multiple parts of the organization
have online services that support their team’s responsibilities. That means you have a
set of valuable service interfaces you can use to compose a solution in source code.

One source code solution that gathers the needed inputs and then calls a set of exter‐
nal services to handle the work might look like this:

(TK check code—ma)
// provide input screens to gather important data
var stateData = collectInputs(personalData, backgroundCheck,
 healthInsurance, salaryDetails);

// execute work in parallel
Promise.all([apiPersonalData(stateData), apiBackgroundCheck(stateData),
 apiHealthInsurance(stateData), apiSalaryDetails(stateData)])
 .then((results) => {
 emitSuccessResponse(results);
 }).catch(error => {
 emitFailedResponse(results);
});

In this example, the required inputs are collected and then a set of parallel calls are
made to external service interfaces to handle each required task in the workflow. The
successful results are then returned to the caller using either the emitSuccessRes
ponse(results) method or, if there were any processing or network problems, via
the emitFailedResponse(results) method.

The internal code can be exposed via HTTP as follows:

*** REQUEST ***
GET /onboarding/jobs/
Accept: text/html
Link: <http://webapicookbook.com/profiles/jobs>;rel=profile
...

326 | Chapter 7: Hypermedia Workflow

*** RESPONSE ***
200 OK
Content-Type: text/html
Link: <http://webapicookbook.com/profiles/jobs>;rel=profile
...

<html>
 ...
 <h1>Onboard New Employee</h1>
 <form name="submit-job" action="/onboarding/q1w2e3r4" method="put">
 ...
 </form>
</html>

*** REQUEST ***
PUT /onboarding/jobs/q1w2e3r4
Content-Type: application/x-www-form-urlencoded
Accept: text/html
Link: <http://webapicookbook.com/profiles/jobs>;rel=profile

jobID=q1w2e3r4&...

*** RESPONSE ***
202 Accepted
Content-Type: text/html
Link: <http://webapicookbook.com/profiles/jobs>;rel=profile

<html>
 ...
 <h1>Job q1w2e3r4</h1>
 <div name="progress">
 pending
 ...i
 Check Job Status
 </div>
</html>

In this HTTP exchange, the API consumer requests the resource that supplies the
FORM inputs for describing an onboarding job. Then, after filling in the FORM, it is
submitted to the URL (supplied in the form) that will execute the job. Notice that 202
Accepted is returned by the workflow engine while the job is in process.

The API consumer can use the refresh URL to monitor the status of the job, and
eventually, the response will be either a 200 OK or a 4xx/5xx status code indicating the
completion of the job run.

7.3 Describing Workflow as Code | 327

Discussion
Note that this example uses the javascript promise.all() construct. That assumes all
the services can run in parallel and they don’t have a fixed sequence. If you need to
implement a workflow that has one or more sequential steps, you should treat each
fixed step as separate workflow elements (see Recipe 7.1 for details).

The work of collecting inputs can be handled using Recipe 7.10 and/or Recipe 7.12.

Errors can be tricky. In some cases, you may need to support a rollback option to
undo the work already completed within the workflow. See Recipe 7.17 for a way to
support the “undo” option in your workflows.

While using source code is a common way to solve network workflow problems, it
has its limits. For example, any changes to the workflow will likely require additional
rounds of design, code, test, and deployment. Depending on your resource availabil‐
ity (e.g., money and time), changes can become costly bottlenecks in your workflow.

Even when you have sufficient resources, using source code as your workflow lan‐
guage can result in many one-off solutions that are not easily reusable (e.g., onboard
Employee, onboardPartTimeEmployee, onboardTemporaryWorker, etc.). If you need to
add customizations to existing solutions and/or want to create more robust work‐
flows, check out Recipes 7.4 and 7.5. For a more complex, but more flexible solution,
see Recipe 7.6.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.11, “Validating Data Properties at Runtime”
• Recipe 4.15, “Maintaining Your Own State”
• Recipe 5.2, “Preventing Internal Model Leaks”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.1, “Designing Workflow-Compliant Services”
• Recipe 7.4, “Describing Workflow as DSL”
• Recipe 7.5, “Describing Workflow as Documents”

328 | Chapter 7: Hypermedia Workflow

7.4 Describing Workflow as DSL
When you are writing a lot of workflow solutions, relying on source code may not
scale well. In these cases, it can be better to use a workflow-aware domain-specific
language (DSL) to design, code, test, and deploy your solutions.

Problem
What does a workflow-aware DSL look like, and when does it make sense to use it
instead of native code implementations? What are the advantages and challenges of
supporting a workflow DSL for your organization?

Solution
As mentioned in Recipe 7.3, using native source code as your workflow language
works well when you have rather straightforward solutions that don’t require much
customization and/or rarely change over time. However, in cases where your work‐
flows need to be more flexible or when you need to support lots of workflow solu‐
tions within an organization, it is usually better to adopt an approach that assumes a
workflow-aware environment that supports general workflow processes and lowers
the barrier for creating, testing, and deploying them into production.

Example
Here’s an example of handling the ordering and checkout of groceries using Hyper‐
CLI, a hypermedia DSL that I created for this book:

complete grocery checkout

load job config
CONFIG LOAD grocery.config
grocery.exitOnError = true

load shared state
REQUEST WITH-URL $$sharedstateURL$$
STACK PUSH WITH-RESPONSE ##sharedState#

get update cart
REQUEST WITH-URL $$scartURL$$
REQUEST WITH-FORM cartCheckout WITH-STACK
STACK PUSH WITH-RESPONSE ##sharedState##

get shipping details
REQUEST WITH-URL $$shippingURL$$
REQUEST WITH-FORM bookShipping WITH-STACK
STACK PUSH WITH-RESPONSE ##sharedState##

settle payment

7.4 Describing Workflow as DSL | 329

https://twitter.com/hyper_cli
https://twitter.com/hyper_cli

REQUEST WITH-URL $$paymentURL$$
REQUEST WITH-FORM settlePayment WITH-STACK
STACK PUSH WITH-RESPONSE ##sharedState##

update shared state
REQUEST WITH-URL $$sharedStateURL$$
REQUEST WITH-FORM updateState WITH-STACK

end job

In this example, three tasks are completed (cartCheckout, bookShipping, and settle
Payment). At the start and end of the script, the shared state is first loaded then, after
it is updated by the three tasks, saved again. Note also the grocery.config file loaded
at the start. This holds the various URLs needed to complete the job.

A hypermedia DSL like the one shown in this example can streamline workflow
authoring since many of the details (e.g., handling HTTP requests, locating and fill‐
ing in forms in a response, etc.) are handled by the DSL directly. If you were using
code (see Recipe 7.3), you’d need to deal with this yourself (possibly through a shared
code library).

Alternatively, you can use shell scripting (MS-DOS, Linux bash, etc.) to do the same
work. It takes a bit more effort but can be quite effective. You need to lean on a hand‐
ful of utilities, like cURL for handling HTTP, xslt and/or jq for parsing XML and
JSON, respectively, and a heavy dose of grep, awk, and other string manipulation
tools.

Discussion
DSLs can make it safer and easier to create workflow scripts since they constrain the
possible actions due to the limited power of the language itself. This can also be a bit
of a frustration for programmers who are used to a fully operational programming
language like Java, NodeJS, etc.

Using shell scripting and utilities offers more power and flexibility than a dedicated
DSL like the one shown in this example, but with great power comes great responsi‐
bility. It may be harder to craft a safe, effective shell script and you are more likely to
introduce bugs along the way.

Whether you use a dedicated DSL or pull together your own using command-line
shell scripting, expressing workflow as script, can reduce the turnaround time it takes
to code, test, and deploy your workflow solutions.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 4.11, “Validating Data Properties at Runtime”

330 | Chapter 7: Hypermedia Workflow

• Recipe 4.15, “Maintaining Your Own State”
• Recipe 5.14, “Increasing Throughput with Client-Supplied Identifiers”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.1, “Designing Workflow-Compliant Services”
• Recipe 7.3, “Describing Workflow as Code”
• Recipe 7.5, “Describing Workflow as Documents”

7.5 Describing Workflow as Documents
The most robust and resilient way to describe service workflow is using declarative
documents. This recipe provides an example of what a declarative, document-based
workflow language looks like.

Problem
You want to describe workflow in a declarative way—one that does not involve a step-
by-step execution plan, but instead, describes all the work to be done and allows
document consumers to decide how to accomplish the work. What does that docu‐
ment look like? What are the required elements of such a document, and what are the
limits to using this approach to supporting workflow in a hypermedia environment?

Solution
The best way to describe workflow in a declarative way is to create a workflow
vocabulary (see Recipe 3.3) that outlines the properties and actions needed to fulfill
all the requirements of a workflow-compliant service, as defined in Recipe 7.1. That
means supporting both tasks and jobs as well as supporting shared state. The docu‐
ments also need to make it easy for consumers and producers to use correlation-id
and request-id headers to track and manage the work being done.

For more on how to describe and enable declarative workflow, see
Recipe 7.6.

Declarative documents for workflow include all the necessary properties and actions
(see the example) needed to carry out the work. These documents are typically
expressed as HTTP resources (e.g., http://api.example.org/jobs/q1w2e3r4). They may
also be expressed as messages in a queue (see Recipe 7.19). This is especially useful if
the number and/or rate of jobs to process is large, or the traffic for job processing is
sporadic, tends to cause bottlenecks, or experience wait times.

7.5 Describing Workflow as Documents | 331

http://api.example.org/jobs/q1w2e3r4

Example
The following is a sample document that describes a workflow job following the rec‐
ommendations of Recipe 7.1 (in an HTML representation):

<html>
 <head>
 <title>Shopping Checkout Workflow</title>
 </head>
 <body>
 <h1>Shopping Checkout Workflow</h1>
 <div class="job">
 q1w2e3r4t5
 working
 2023-02-23:14:00:00
 2023-02-23:14:00:30
 300
 ...
 Job
 Shared State
 Shared State
 Success
 Failed
 Continue
 Restart"
 Cancel"
 <div class="tasks">
 <div class="task">
 p0o9i8u7y6
 completed
 2023-02-23:14:00:00
 2023-02-23:14:00:30
 60
 ComputeTaxes
 Success (200)
 Task
 Start
 Rollback
 Rerun
 Cancel
 </div>
 ...
 <div class="task">
 u8y7t6r5e4
 pending
 2023-02-23:14:00:00
 2023-02-23:14:00:30
 60
 Schedule Shipping
 Task
 Start
 Rollback

332 | Chapter 7: Hypermedia Workflow

 Rerun
 Cancel
 </div>
 </div>
 </div>
 </body>
</html>

This document/vocabulary can be used by a workflow-engine application to handle all
the details of running and monitoring the job. See Recipe 7.6 for more on how to
handle each action element.

Discussion
The advantage of using declarative documents for workflows is that you are separat‐
ing the description details from the processing code. This makes it possible to change
the code frequently and improve it over time without needing to change the docu‐
ment format or contents.

Document-driven workflows are effective when you are dealing with workflow-
compliant service interfaces, as described in this book. If you are trying to enlist non-
compliant services, you probably need to use a DSL (Recipe 7.4) or code (Recipe 7.3)
approach instead.

Be careful to not introduce imperative-style step-by-step processing into your work‐
flow documents. Elements like branching (if..then..else), variable-checking (when
$state.value==="13"), and other similar constructs turn your declaration document
into an imperative programming language. These decision elements should be kept
within the tasks (the service being used) and not within the job document. If you
think you need this level of programming, you probably need to use a DSL (Recipe
7.4) or maybe a code-based (Recipe 7.3) approach instead.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 3.9, “Designing for Reversible Actions”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.15, “Maintaining Your Own State”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 7.1, “Designing Workflow-Compliant Services”

7.5 Describing Workflow as Documents | 333

• Recipe 7.3, “Describing Workflow as Code”
• Recipe 7.5, “Describing Workflow as Documents”

7.6 Supporting RESTful Job Control Language
One of the persistent challenges for creating multiservice workflows on the web is a
consistent and robust language for describing and implementing workflow. This
recipe provides a basic set of actions and metadata for orchestrating independent
workflows on the open web.

Problem
When you have a lot of workflow processing to deal with, it can be helpful to imple‐
ment a generic workflow engine that supports managing multiple jobs and tasks.
What does it take to support a robust job control language (JCL), and how can you
confidently mix and control independent service interfaces that might be running in
various places across the web?

Solution
As your use of workflow grows, you’ll need a consistent way to describe, manage, and
execute those workflow jobs. I’ve already covered the basics of workflow-compliant,
composable services (see Recipe 7.1). Now, here’s a recipe that defines a robust and
reliable JCL for the web.

I’ve used various versions of this RESTful JCL recipe a number of
times over the years, each tuned for local needs. What I’m includ‐
ing here is a generic recipe that takes into account lots of features
used in the past, bringing them together in a single place. Feel free
to tweak and adjust this recipe to fit your specific needs.

Wait, What About iPAAS?
There are definitely other workflow platforms you can use to meet your interoper‐
ability needs. In the limited space we have here, I’ve chosen to focus on a hypermedia-
driven solution since that is one that I rarely see in use, even though I’ve had great
success with it in the past. Most other solutions result in hardcoding connections and
parameter sharing while a REST-based approach achieves the same ends without the
tightly coupled implementation.

334 | Chapter 7: Hypermedia Workflow

This recipe provides a basic set of actions and metadata for coordinating independent
services on the open web. It also includes actions for managing (list, filter, add,
update, and remove) job records. Figure 7-2 shows the RESTful job control workflow.

Figure 7-2. RESTful job control workflow

Executing workflow with RESTful JCL
There are two key elements to defining and executing workflow records:

Tasks
A task is a single action in a workflow (computeTaxes, DoCreditCheck, Update
CustomerAccounts, etc.) A task supports execute (taskStartURL), repeat
(taskRerunURL), revert (taskRollbackURL), and cancel (taskCancelURL).

Jobs
Each job contains one or more tasks. The set of tasks in each job must be able to
run in parallel. A job supports restart (jobRestartURL), continue (jobContin
ueURL), and cancel (jobCancelURL). It also has a URL to call when the job com‐
pletes successfully (jobSuccessURL) and when the job fails (jobFailedURL).

To run a job, the job document should be submitted to a workflow engine. Upon
receiving the document, the workflow engine will return a 202 Accepted (see Recipe
7.15) while the tasks are processed and will eventually return a 200 OK or a 4xx/5xx

7.6 Supporting RESTful Job Control Language | 335

HTTP status with the completed response. Upon completion of a job, that job docu‐
ment may be archived for future reference (or re-execution), and the appropriate link
(jobSuccessURL or jobFailedURL) should be activated.

Compliant workflow engines must be prepared to handle jobCancelURL, jobContin
ueURL, and jobRestartURL. They should also support taskStartURL, taskRollback
URL, taskRerunURL, and taskCancelURL properties, as well as monitor or update pro‐
gress via taskStatus and jobStatus. The engines should also monitor the jobMaxTTL
and taskMaxTTL values, and cancel jobs whenever the maximum runtime has been
exceeded.

Tasks that need to be run in a fixed sequence must be separated into individual job
documents, and those job documents can be run in fixed order as each job success‐
fully completes.

Managing RESTful JCL records
Along with the work for running workflows, you also need to support authoring, fil‐
tering, and removing workflow documents. A handful of actions are included in this
recipe to handle workflow document management:

jobList

Return a list of job records

jobFilter

Search for job records

jobRead

Return a single job record

jobCreate

Add a new job record to the collection

jobUpdate

Modify an existing job record

jobRemove

Delete an existing job record

You’ll notice that this list does not include actions for adding, editing, and removing
task records. In this case, the jobItem is the smallest manageable resource in the sys‐
tem. If you wish, you can implement another set of management actions (essentially
applying Recipe 7.11) at the task level. In my experience, this is rarely needed.

336 | Chapter 7: Hypermedia Workflow

Shared state, correlation IDs, and progress
An element not shown here is support for passing state between tasks. See Recipe 7.2
for details on how to implement that.

Another important element is sharing jobID and taskID via headers at runtime. As
covered in Recipe 7.1, each workflow-compliant service must share a jobID (as
Correlation-ID header) and taskID (as Request-ID header) for every action within
the job.

Workflow-compliant services used for this recipe should support progress reporting
(see Recipe 7.7) and possibly the “call for help” pattern (Recipe 7.18).

Discussion
RESTful JCL only works if all the services you enlist as tasks follow the rules laid out
in Recipe 7.1. The good news is you can implement workflow-compliant services
without having to also support a full local job control language. RESTful JCL comes
after authoring workflow-compliant services. If you’re just starting out on the road to
workflow systems, consider focusing on compliant service interfaces first, then mov‐
ing on to exploring JCL options.

Are You Sure You Want to Do This?
Implementing a general job control system like the one described here is not a simple
task. Existing alternatives to this recipe are available as off-the-shelf software and as
online SAAS (software as a service) implementations. Choosing to “roll your own”
JCL is a decision not to be made lightly. If you need to support multiple hosting plat‐
forms (including your own local servers), this recipe can be helpful. If, however, you
are only hosting services that run on a single platform (e.g., AWS, Azure, Google,
etc.), using their workflow tooling may be a better choice.

Workflow authoring services may be separate from workflow execution services. The
editor and the engine don’t need to be hosted within the same service interface. In
fact, it can be advantageous to keep the editing work and the execution work separate
since they can move forward at their own individual paces.

The premise of this recipe is that you want to create workflows that take advantage of
service interfaces you have not created and do not control (see Appendix A). Even if
you are working with services built by other teams inside your own organization,
RESTful JCL can improve your success in reusing existing services from other parts
of the company.

7.6 Supporting RESTful Job Control Language | 337

This recipe works well when you commit to describing your work‐
flow as documents (Recipe 7.5). It is much harder to pull off if you
are relying on code (Recipe 7.3) or DSL (Recipe 7.4) to express
workflow.

See Also
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 3.9, “Designing for Reversible Actions”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.15, “Maintaining Your Own State”
• Recipe 5.7, “Publishing Complete Vocabularies for Machine Clients”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 7.1, “Designing Workflow-Compliant Services”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”
• Recipe 7.17, “Supporting Local Undo or Rollback”
• Recipe 7.18, “Calling for Help”

7.7 Exposing a Progress Resource for Your Workflows
When executing and monitoring workflow jobs, it is a good idea to offer up a pro‐
gress report on the job so that API consumers and producers can see how things are
going and what, if any, problems were encountered. This recipe provides an example
progress resource you can use for your workflow implementations.

Problem
How can I keep an eye on long-running workflow jobs? Where can I go to monitor
transaction details or check for errors? What does it take to create a general workflow
progress resource that works whether you are describing your workflows using code
(Recipe 7.3), a DSL (Recipe 7.4), or documents (Recipe 7.5)?

Solution
Like so many other solutions offered in this book, you can often solve your problem
with an HTTP metadata resource (see Recipes 5.5, 5.11, and 5.12). In this case, we’ll
create a workflow-progress resource that holds any and all execution data related to a
workflow job and its tasks (see Recipes 7.1 and 7.6 for more on jobs and tasks for
workflow).

338 | Chapter 7: Hypermedia Workflow

Every workflow job should have an associated progress resource. This resource can
be tied to the job using the jobID, which is often the same as the correlation-id
value stored in an HTTP header. That resource can be a collecting point for any pro‐
gress reporting or other tracking for the job. You should track both the job metadata
and the metadata for each task in the job as they are executed. Figure 7-3 illustrates
the workflow progress.

Figure 7-3. Workflow progress

Important job metadata is:

jobID

Unique identifier for the job resource (often the correlation-id)

jobURL

URL of the job resource document

jobDescription

Human-readable text that describes the job

jobStatus

Indicates job status (pending, working, completed, or failed)

jobDateCreated

Indicates the date/time (UTC) the job resource was first created

jobDateUpdated

Indicates the last date/time (UTC) the job resource was modified

jobMaxTTL

Indicates the maximum amount of time (in seconds) this resource is considered
valid

Important task metadata is:

taskID

Unique identifier for this task (often the request-id)

7.7 Exposing a Progress Resource for Your Workflows | 339

taskURL

URL of the task resource

taskDescription

Human-readable text that describes the task

taskStatus

Indicates task status (pending, working, completed, or failed)

taskStartDateTime

Indicates the date/time (UTC) the task started

taskStopDateTime

Indicates the date/time (UTC) the task stopped

taskMaxTTL

Indicates the maximum amount of time (in seconds) this task is considered valid

taskMessage

Human-readable text that contains any messages related to the task

The last item for each task (taskMessage) can contain multiple lines of progress
reporting, such as each attempt to complete the task. Writing text lines into the task
Message field is often sufficient for most monitoring needs. Another useful way to
record that is to include the HTTP request details (URL, headers, and body) as well as
the HTTP response details (HTTP status, headers, and body).

If you include the HTTP details as part of your progress resource,
you may be exposing a security leak. Make sure only duly author‐
ized users can read this part of the progress resource.

You can format the progress resource for display in any of the common media types
(HTML, Collection+JSON, HAL, SIREN, UBER, etc.). When displaying the progress
data, you should also include a refresh link and caching data to give the API con‐
sumer hints on the freshness of the resource.

Example
Here is a sample progress resource formatted in Collection+JSON:

**** REQUEST ****
GET /jobs/q1w2e3r4t5;progress
Accept: application/vnd.collection+json
...

**** RESPONSE ****

340 | Chapter 7: Hypermedia Workflow

200 OK
Content-type: application/vnd.collection+json
Link: <<http://api.example.org/jobs/q1w2e3r4t5;progress>>; rel="refresh"
Cache-control: max-age 10000, public

{"collection" : {
 "title": "Job q1w2e3r4t5 Progress",
 "links": [
 {"rel":"refresh","href":"http://api.example.org/jobs/q1w2e3r4t5;progress"}
],
 "items": [
 {"id": "q1w2e3r4t5",
 "type": "job",
 "data": [
 {"name":"jobID", "value":"q1w2e3r4t5"},
 {"name":"jobURL", "value":"http://api.example.org/jobs/q1w2e3r4t5"},
 {"name":"jobDescription", "value":"Employee Onboarding Job"},
 {"name":"jobStatus", "value":"working"},
 {"name":"jobDateCreated", "value":"2024-05-01:13:12:11"},
 {"name":"jobDateUpdated", "value":"2024-05-01:13:15:14"},
 {"name":"jobMaxTTL", "value":"30000"}
]
 },
 {"id": "u8y7t6r5",
 "type": "task",
 "data": [...]
 },
 {"id": "5r4e3w2q",
 "type": "task",
 "data": [...]
 },
 {"id": "p0o9i8u7",
 "type": "task",
 "data": [
 {"name":"taskID", "value":"p0o9i8u7"},
 {"name":"taskURL,
 "value":"http://api.example.org/jobs/q1w2e3r4t5#p0o9i8u7"},
 {"name":"taskDescription, "value":"Credit Check"},
 {"name":"taskStatus, "value":"completed"},
 {"name":"taskStartDateTime, "value":"2024-05-01:13:13:11"},,
 {"name":"taskStopDateTime, "value":"2024-05-01:13:14:11"},,
 {"name":"taskMaxTTL, "value":"5000"},
 {"name":"taskMessage, "value":"completed successfully."},
]
 }
]
}}

Note that in this example, only basic progress information is shared for each task
(e.g., "completed successfully"). This reduces the chances of leaking personal data
or other intellectual property that might be a breach of security.

7.7 Exposing a Progress Resource for Your Workflows | 341

Once a job is completed, you should archive these progress records for later review, as
needed.

Discussion
The simple goal of workflow progress resources is to offer additional feedback to API
callers as the jobs and tasks execute. For that reason, it is a good idea to keep work‐
flow progress resources very basic. Don’t try to include too much data, and be sure to
not include any internal or private programming information as this can constitute a
security leak.

Workflow progress resources should not be used as trace logs for your services, and
they should not include any internal values and/or debugging information. If you
need that kind of detail, use something available within your programming/platform
internals, and do not expose that information via HTTP.

You might be tempted to include several links in the progress document that allow
the caller to restart a task, perform a rollback, or run other workflow management
options. This is not a good practice. If you are using code (Recipe 7.3) or DSL (Recipe
7.4) to describe your workflow, these added features can cause conflict and confusion
at runtime.

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.5, “Advertising Support for Client Response Preferences”
• Recipe 5.10, “Publishing API Metadata”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

7.8 Returning All Related Actions
There are times when the list of possible actions is quite long. In some cases, there
may be more than a dozen possible state transitions (links or forms) available from a
single response. Returning all those forms (with default values filled in) for each
request can be very costly and affect service response times.

Instead of returning all possible state transitions on every request, you can create a
separate resource response that does that independently of the current workflow or
state of the application. This reduces response payload size, increases response times,
and standardizes a repeatable way to get an up-to-date list of available transitions.

342 | Chapter 7: Hypermedia Workflow

Problem
For some applications, the possible number of state transitions (or links) at any single
moment can be quite long. Common workflow interactions—like paging through a
list (see Recipe 7.11), for example—can have lots of valid possible actions at a single
moment, such as top, next, previous, last, item, create, refresh, and self. That
does not include any transitions to other collections or other related activities (list-
users, list-companies, list-reports, etc.).

Listing all these options with every response can be tedious and take up quite a bit of
payload space. What is needed is a standardized way to ask for all the possible transi‐
tions as a separate step (e.g., a transition!) to reduce the payload size without reduc‐
ing the available information.

Solution
A simple way to solve the “too many links in the response” challenge is to expose a
separate resource that always lists all the possible actions at any single moment in
time for the application. You can do this via the related IANA link relation value.
Now, the service interface can be designed to offer helpful links within the body of
the payload and then offer all the other possible links as a separate resource (see the
example).

An advantage of this approach is that the service behind the interface can take into
account various context-related variables when assembling the contents of the
related resource. This includes the state of the data behind the service (is data avail‐
able right now?), the state of application processing (is the service in maintenance
mode?), the state of the client application (is the client in the middle of a set of
actions?), and even the calling context identity (is the logged-in user an admin?).

Figure 7-4 is a simple diagram of the related link that you can add to each response.
See the “Example” section for details.

Figure 7-4. Related workflow

7.8 Returning All Related Actions | 343

https://oreil.ly/lQuev

Example
By adding a related link to your response, you can “bury” the additional transitions
that you don’t want to expose in the default response. In this example, the self tran‐
sition is always added to responses. Now, there is also a related link that clients can
use to get a more complete list of all the possible actions:

{
 "collection" : {
 "links": [
 {
 "name": "self",
 "rel" : "home self",
 "href": "https://api.example.org/"
 },
 {"$comment" : "link that points to the list of related actions"},
 {
 "name": "related",
 "rel": "collection",
 "href": "https://api.example/org/related"
 },
 {
 "name": "list",
 "rel": "collection",
 "href": "https://api.example.org/list"
 }
],
 "items": [...],
 "queries": [...],
 "template": { ... }
 }
}

The text/uri-list IANA media type is an excellent format for
returning lists of related links.

When the client application follows the related link, the response returns a complete
list of all the possible actions for the current calling context:

{
 "collection" : {
 "links": [
 {
 "name": "self",
 "rel" : "related",
 "href": "https://api.example.org/"
 },
 {"$comment" : "list of related available actions"},

344 | Chapter 7: Hypermedia Workflow

 {
 "name": "list",
 "rel": "collection",
 "href": "https://api.example.org/list"
 },
 {
 "name": "filter",
 "rel": "collection",
 "href": "https://api.example.org/filter"
 },
 {
 "name": "create",
 "rel": "collection",
 "href": "https://api.example.org/create-form"
 },
 {
 "name": "needs-approval",
 "rel": "collection",
 "href": "https://api.example.org/list?status=needs-approval"
 },
 {
 "name": "home",
 "rel": "home",
 "href": "https://api.example.org/"
 }
],
 "items": [...],
 "queries": [...],
 "template": { ... }
 }
}

It is worth pointing out that in these two examples, the list link relation appears in
both lists. There is no rule that says a link can occur in only one location. Also, the
contents of the related resource can change over time. The list of links can reflect
the current state of the service, the clients, and the user context.

When service interfaces support the related pattern, client applications can easily be
coded to “search” for a link or form that was not initially represented in the service
interface response. For example:

// get root response and perform checkout
var output = request(apiRootUrl);
var link = output.findLink("checkout");
if (link === null) {
 link = output.findLink("related") {
 if(link !=== null) {
 link output.findLink("checkout");
 }
}
if(link !=== null) {
 runCheckout(output, stateVariables);

7.8 Returning All Related Actions | 345

}
else {
 runUnableToCheckout(output, stateVariables);
}

If you wish, you can also write API consumer code that “hides” the use of related
behind a facade. Then all you need to write in the client code is output.fin
dLink("related");, and the code can look in the local response first and, if needed,
attempt to activate the related link to see if it can be found there.

Discussion
This recipe is similar to Recipe 7.9 in that it helps to optimize link finding for client
applications. Humans are really good at finding links and/or crafting their own from
scratch, but machines are not. This recipe is a way to compensate for machine short‐
comings without having to rely on some form of artificial intelligence.

Using the related recipe makes sense when there are a lot of possible transitions at
any given moment. Interface designers can focus on creating a usable set of responses
without having to include all possible transitions for all possible responses. This
reduces clutter and disagreements about just what links or forms should be included
in responses.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.9, “Returning Most Recently Used Resources”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

7.9 Returning Most Recently Used Resources
You can make it easier on API consumers when you include a list of the most recently
used links/forms in your responses. This can help programmers better understand
common uses of your service interface and make it easier for developers to access the
common links they need to solve their problems.

Problem
It can be a challenge for developers and designers to agree on what links and forms
should be returned in hypermedia responses. Designers typically try to create an

346 | Chapter 7: Hypermedia Workflow

interface that is both usable and useful. This usually means leaving some details out.
Developers and architects often aim for “completeness” and want to include all possi‐
ble options in each response (see Recipe 7.8). What’s a good way to balance these two
options and still include helpful links in responses? What happens if the kinds of
links commonly needed by users change over time?

Solution
This recipe is closely connected to Recipe 7.8. That recipe offers a way to stash lots of
related links in a separate document to keep the responses reasonably small, but still
offer a way to access all the possible actions. However, if taken too far, most hyperme‐
dia responses will contain a single link (related), and now all clients need to do addi‐
tional HTTP requests to get things done. Not a good idea. Instead, it can be helpful to
keep track of the most recently used (MRU) resource links and include those in
responses.

A Window into MRUs
The idea of identifying and exposing the most recently used application options
became common with the graphical user interfaces of the ’80s and ’90s. As application
menu options got longer, there was a move to improve the interface by reducing
options presented to the user. Introducing the MRU pattern allowed applications to
offer up the most recently edited documents, used commands, or even requested
applications. This MRU concept is also used for caching services to keep track of
most recently requested resources.

This recipe can be used in conjunction with Recipe 7.8 to include additional links in
commonly used responses. In this approach, the service interface can keep track of
commonly requested resources and include a link to them in responses. For example,
if client applications typically follow up a request for the list resource with a second
request for the add resource, service interfaces can track that pattern and automati‐
cally include the add resource link as part of the list resource response.

This tracking of commonly used resources can be done at the application level or user
level. This makes it possible to customize the MRU list for the calling context—
including the access rights of the logged-in user.

Keeping track of MRUs for a context (service wide or consumer specific) takes a bit of
work but is not very complicated. A history list of the recently requested resources is
all that is needed. As each resource is requested, that link is placed in a list (URL and
count). When it is time to represent a resource response, the service interface can
consult the MRU listing and (after filtering for access context, if needed), inject the
last most recent links into the response.

7.9 Returning Most Recently Used Resources | 347

Returning MRUs can reduce the reliance on Recipe 7.8 and help new developers learn
the most common actions for the service. The list of MRUs is usually presented as
normal links in the response (Figure 7-5). But you can also create an mru resource
(similar to the related resource from Recipe 7.8).

Figure 7-5. MRU workflow

Example
Here’s an example response (in Collection+JSON) that shows both the MRU link
("name":"mru") and a few of the most recently used links (the ones with rel set to
mru):

{
 "collection" : {
 "links": [
 {
 "name": "self",
 "rel" : "home self",
 "href": "https://api.example.org/"
 },
 {"$comment" : "link that points to the MRU list"},
 {
 "name": "mru",
 "rel": "collection",
 "href": "https://api.example/org/mru"
 },
 {"$comment" : "some MRU links in the response"},
 {
 "name": "list",
 "rel": "mru collection",
 "href": "https://api.example.org/list"
 },
 {
 "name": "pending",
 "rel": "mru collection",
 "href": "https://api.example.org/list?status=pending"
 },
 {

348 | Chapter 7: Hypermedia Workflow

 "name": "home",
 "rel": "mru home",
 "href": "https://api.example.org/"
 }
],
 "items": [...],
 "queries": [...],
 "template": { ... }
 }
}

Services that support the MRU recipe should return at least the MRU link in every
response. This reminds clients where they can go for additional details. It is also valid
to return the first few MRUs (see the example) in responses. These included MRUs
should reflect the current user context (e.g., the most recently used links by the cur‐
rently logged-in user) as well as the current service context (e.g., the most recently
used links that are valid at this time). Not all of the most recently used links might be
valid at a given moment. For example, it might not be possible to query the list of
customers while database maintenance is underway on the service.

Discussion
The work of tracking the most recently used URLs can be handled by creating a sim‐
ple first in, first out (FIFO) stack of a fixed length (I use a depth of three to five for
most cases). After completing the request, you can add the URL value to the stack
and, if needed, drop URLs off the “bottom” of the list as it grows too long. Then you
can just return this list of URLs in your response.

Don’t try to “remember” too much about the previous requests. For example, it is not
a good idea to include header information or attempt to derive the “intent” of the
request with other metadata. Just keep the links and return those.

The MRU pattern is a great way to help API consumers know which are the more
frequent calls for your service. You can think of MRUs as a kind of “help” feature for
novice users. You can implement them that way by offering a “toggle” option where
consumers can turn MRUs on or off in responses. See Recipe 5.5 for a recipe that sup‐
ports this kind of toggle option.

You can also use Recipe 5.5 to hold a variable on how long the list of MRUs should be
in each response. Typically returning three to five MRUs is more than enough and
makes a good default value.

It is a good idea to share the MRU values as simple links—not forms. This keeps
down the amount of work the server-side code needs to do to include them and
reduces the amount of content in the responses.

When rendering the MRUs in your response, you can make things easy for API con‐
sumers by identifying the list using common link relation values ("mru"), a block

7.9 Returning Most Recently Used Resources | 349

within the response (<div id="mru">…</div>), or some other method common to
the response format.

It is not a good idea to return MRU values in HTTP headers (using a link element).
The MRU list might get long and is best rendered in the body of the message. Alter‐
natively, you can include a single link element that points to a standalone MRU list:

**** REQUEST ****
GET /users/list HTTP/1.1
Host: api.company.org
Accept: application/vnd.siren
Authentication: BASIC o9eir8tu5ry6362yeir...

**** RESPONSE ****
200 OK HTTP/1.1
Content-Type: application/vnd.siren
Link: <https://company.org/users/mru>;rel="mru"

...

If your service supports user identities, you can build in support for tracking MRUs
by identity, too. This adds another level of customization to the response list.

Even if you don’t want to keep track of the actual commonly used URLs, you can use
the MRU recipe to return URLs that are likely to be handy, like the home URL or the
collection list URL, etc.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.8, “Returning All Related Actions”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

7.10 Supporting Stateful Work in Progress
There are times when you need to gather quite a bit of data from API consumers, and
a single FORM resource is not enough. In these cases, a set of related steps for data
collection and review is handy. This recipe offers a “work-in-progress” pattern for
collecting data and submitting the final results.

350 | Chapter 7: Hypermedia Workflow

Problem
How can you collect a large amount of data in small related chunks and then submit
the collected result in a single step? What does the data collection involve with multi‐
ple people filling in the same resource? What if the collection process is expected to
take a long time due to waiting on data from other parties?

Solution
The work-in-progress (WIP) recipe is a great way to gather lots of data over a stretch
of time before reviewing it and submitting the data collection for processing. A WIP
approach lets you define a persistent “work document” and then, through a set of one
or more interactions, continue to collect inputs until you have amassed a sufficient
amount of data to submit to a service for processing.

You can also use the WIP recipe to manage multiple document streams in flight. For
example, you might need to start two or three WIP documents to complete a task like
approving a customer for a credit purchase.

Here is the list of actions in the WIP recipe:

listWIP

Go to the WIP list resource.

filterWIP

Get a filtered list of WIP records.

createWIP

Create a new WIP resource.

readWIP

Retrieve a single WIP resource.

updateWIP

Update a single existing WIP resource.

cancelWIP

Cancel an existing WIP resource.

shareWIP

Share/save an existing WIP resource.

submitWIP

Submit (for final acceptance) a completed WIP resource.

The first two actions (listWIP and filterWIP) help in managing the list of WIP
documents. The next handle the work of a single WIP document (createWIP, read
WIP, updateWIP, and cancelWIP). shareWIP gives you the option of sending the

7.10 Supporting Stateful Work in Progress | 351

document to another user or machine for processing, and submitWIP supports send‐
ing the completed WIP document for processing.

Usually, this recipe is used in conjunction with Recipe 7.12, which
can be used to collect the input data.

Figure 7-6 shows the WIP workflow.

Figure 7-6. WIP workflow

Take the example of employee onboarding. This may require lots of data entry from
multiple parties and even the possibility of having to wait on approvals or some other
data input that might not arrive for a day or two. You can use a WIP document to
handle this process. You may need to collect employee data, inputs from human
resource department interviews, the results of a background check from a third party,
and details on an employment contract. You can use the WIP recipe to start a work
document that will eventually hold all these inputs and share that with various parties
within the organization to edit when they have data available. Eventually, someone
with the proper authority can submit the completed data for final processing.

352 | Chapter 7: Hypermedia Workflow

Example
Here is an example that works through the employee onboarding scenario:

**** REQUEST ****
GET /onboarding/
Accept: application/vnd.siren+json

**** RESPONSE ****
200 OK
Content-Type: application/vnd.siren+json

{
 "title" : "Onboarding",
 "links" : [
 {"rel" : ["listwip"], "href" : "/onboarding/wip/"}
 ...
]
}

Following the listwip link returns a list of any current WIP documents in progress:

**** REQUEST ****
GET /onboarding/wip
Accept: application/vnd.siren+json

**** RESPONSE ****
200 OK
Content-Type: application/vnd.siren+json

{
 "title" : "Onboarding WIP List",
 "links" : [
 {"rel" : ["self", "listwip"], "href" : "/onboarding/wip/"},
 {"rel" : ["home"], "href" : "/onboarding/"},
 ...
],
 "actions" : [
 {
 "name" : "createwip",
 "method" : "PUT",
 "href" : "/onboarding/wip/p0o9i8",
 "fields" : [
 {"name" : "dateCreated", "value" : "2024-MAY-30"},
 {"name" : "wipowner", "value" : "Mandy Mayberry"}
]
 }
 ...
]
}

7.10 Supporting Stateful Work in Progress | 353

The createwip form can gather basic data like the date/time it was created and the
user associated with creating the document, and then present an interface prompting
for data collection. It might look like this:

**** REQUEST ****
GET /onboarding/wip/p0o9i8
Accept: application/vnd.siren+json

**** RESPONSE ****
200 OK
Content-Type: application/vnd.siren+json

{
 "title" : "Onboarding Mick Mickelsen",
 "links" : [
 {"rel" : ["self", "listwip"], "href" : "/onboarding/wip/"},
 {"rel" : ["home"], "href" : "/onboarding/"},
 {"rel" : ["employee"], "href" : "/onboarding/wip/p0o9i8/employee"},
 {"rel" : ["interviews"], "href" : "/onboarding/wip/p0o9i8/interviews"},
 {"rel" : ["background"], "href" : "/onboarding/wip/p0o9i8/background"},
 {"rel" : ["contract"], "href" : "/onboarding/wip/p0o9i8/contract"},
 ...
],
 "actions" : [
 {
 "name" : "cancelwip",
 "method" : "DELETE",
 "href" : "/onboarding/wip/p0o9i8",
 },
 {
 "name" : "updatewip",
 "method" : "PUT",
 "href" : "/onboarding/wip/p0o9i8",
 "fields" : [
 {"name" : "status", "value" : "working"},
 ...
]
 },
 {
 "name" : "submitwip",
 "method" : "PUT",
 "href" : "/onboarding/wip/p0o9i8",
 "fields" : [
 {"name" : "status", "value" : "submitted"}
]
 }
 ...
]
}

354 | Chapter 7: Hypermedia Workflow

Notice that the body of the response contains the native WIP actions (cancel, sub
mit, and update) and that the link section of the document includes several substeps
for completing the process. Typically each step (employee, interviews, etc.) contains
a form for inputs that supports the updateWIP action directly. In this way, each step is
expressed as a resource that updates the shared state for that WIP document.

This recipe has lots of variations and implementation options. Be
sure to check out the “Discussion” section for hints on how to take
advantage of this recipe.

In some cases, the work needs to be handled by some other party and that may mean
sharing the WIP document. You can use the shareWIP action for that. Depending on
how your implementation works, you might just change the “owner” property of this
WIP document to allow it to appear in a new user’s list of things to process. Or you
might generate an email asking someone to follow a link to complete the needed
inputs. You might even generate a new resource for another system (e.g., a work
ticket, etc.) and use an additional workflow to incorporate the new data into this WIP
document.

Eventually, someone needs to either select the cancelWIP or submitWIP action. Once
this is done, the document can be queued for processing (see Recipe 7.15) or be
canceled.

Discussion
The WIP recipe has lots of variations, and there aren’t many hints in Figure 7-6. My
version has just the minimum elements, and you’ll need to enhance this recipe with
others mentioned earlier.

It is best not to get too intricate with field submissions for a WIP document. Too
many dependent fields or fields that are required to be submitted together can turn a
WIP workflow into a confusing stateful experience that is hard to understand, pre‐
dict, or debug. Instead, make sure the service accepts any combination of inputs (or
just one input at a time) for each updateWIP action. You can use the submitWIP action
as a signal that the API consumer has completed their entry and is looking for input
review.

It can be tricky, but you can link WIP documents together to create multistep work‐
flow without much complexity. Using the preceding example, links to each collection
step (employee, interviews, etc.) could point to another WIP document (e.g., inter
viewsWIP). And that one could point to another, and so on. In this way, you can use
the WIP recipe to implement a human-centric variable workflow system.

7.10 Supporting Stateful Work in Progress | 355

If you want to create more sophisticated machine-driven work‐
flows, see Recipe 7.6 and Recipe 7.15 for approaches that are better
suited for “headless” or automated multistep flows.

It’s a good idea to archive any completed (or even abandoned) WIP documents for
future reference. You may even want to add support for reusing WIP documents in
the future. See Recipe 7.14 for hints on how to implement a reuse pattern.

The WIP model is a good way to implement, for example, a “ticketing” system for
customer service, support, etc. You can make each set of data another resource for
inputs, and display and automate the process of sharing WIPs (via shareWIP) based
on the state of the document (e.g., fields that are still missing). This usually means
establishing some checking logic within the service each time you submit data (via
updateWIP):

var wipDocument = parseUpdateRequestBody();

if(wipDocument.onboardingStatus = "needs background check") {
 wipDocument.assignedTo = "Moira";
 writeStoredItem(wipDocument);
}
...

You can use data points within each WIP document to help with filtering (via filter
WIP) any outstanding documents. For example, you might add some metadata fields
like assignedTo, dueDate, etc., and even automatically filter the complete list based
on those fields. In this way you can create customized to-do lists for API consumers
to work with.

An easy implementation of this recipe is to just return a single WIP document with
all the requested fields, possibly with dozens of inputs. For machine cases, this is not a
problem at all, especially if you use Recipe 7.12 to collect the data. You can even use
the single-document approach for human UI if you decorate the inputs in a way that
results in a kind of “tabbed” interface (see Figure 7-7):

356 | Chapter 7: Hypermedia Workflow

<html>
<head><title>Onboarding Mick Mickelsen</title></head>
<body>

 <div id="wip-actions">
 Cancel
 Update
 Submit
 </div>
 <div> id="wip-inputs">
 <form name="employee" ... >
 <submit name="updateWIP" />
 <input name="field1" ... />
 <input name="field20" ... />
 </form>
 <form name="interviews">
 <submit name="updateWIP" />
 <input name="field21" ... />
 <input name="field37" ... />
 </form>
 <!-- other forms go here -->
 </div>
</body>

In this example, each set of collected inputs is wrapped within an HTML FORM ele‐
ment that can be submitted to the WIP engine at any time. For humans, this might be
rendered as shown in Figure 7-7.

Figure 7-7. Human-centric HTML interface for WIP pattern

7.10 Supporting Stateful Work in Progress | 357

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.4, “Leveraging HTTP URLs to Support ‘Contains’ and ‘AND’ Queries”
• Recipe 7.11, “Enabling Standard List Navigation”
• Recipe 7.12, “Supporting Partial Form Submit”
• Recipe 7.14, “Optimizing Queries with Stored Replays”

7.11 Enabling Standard List Navigation
Most service interfaces need to support list navigation options like getting the “next
page,” selecting an item from the list, etc. This recipe provides a simple pattern that
can be applied to any exposed resource list.

Problem
What’s the best way to support paging through a long list of data?

Solution
A good way to add “pagination” support to your service interface is to expose a fixed
set of actions that can be applied to any resource list. This set of actions should
include not only list navigation actions (first, previous, next, and last) but also actions
to pick a particular item from the list and even exit the list navigation.

Here is the list of actions your list navigation should support:

List
Go to the list (usually, the start of the list).

First
Move to the first page in the list.

Previous
Move back to the previous page in the list.

Next
Move forward to the next page in the list.

Last
Move to the last page in the list.

358 | Chapter 7: Hypermedia Workflow

Select
Select an item from the list.

Exit
Exit the list navigation.

Home
Go to the “Home” resource (exiting the list).

A common approach is to offer a link in the document with rel="list" or rel="col
lection" that “starts” the navigation process. The returned resource then includes
links to support the other actions in the preceding list, including the ability to leave
the list via rel="exit" and/or rel="home". You don’t need to support both, but there
may be cases where you can do some state cleanup and use rel="exit".

The rel="select" action makes it clear that API consumers can use that link to navi‐
gate to a single item resource. This is handy when not all members of the list support
single reads. Think, for example, of a list of configuration values.

You can enhance this recipe with Recipe 6.4 to add support for creating filtered lists.
You can also use Recipe 7.12 to support editing or adding resources to the list.
Figure 7-8 shows the list navigation workflow.

Figure 7-8. List navigation workflow

7.11 Enabling Standard List Navigation | 359

Example
Usually, you’d see a resource that offers the ability to navigate a list:

{"collection" : {
 "title" : "Manage Customers",
 "links" : [
 {"rel" : "home self", "href" : "/customers/"},
 {"rel" : "list collection", "href" : "/customers/list"}
]
}}

Activating the list link then returns the list resource with accompanying actions:

{"collection" : {
 "title" : "Customer List",
 "links" : [
 {"rel" : "self list collection", "href" : "/customers/list"},
 {"rel" : "home", "href" : "/customers/"},
 {"rel" : "first", "href" : "/customers/list/q1w2"},
 {"rel" : "next", "href" : "/customers/list/t5y6"},
 {"rel" : "exit", "href" : "/customers/p0o9"}
],
 "items" : [
 ...
]
}}

In this example, we can assume this is the “first” page in the list. Note that the previ
ous link is not offered here since there is no way to navigate before the start of the list.
The last link is also missing. This is common in cases where the list is very long
(thousands of records) and there is no easy way to compute the last page of a
collection.

You’ll also notice that the href values for first and next are not semantically mean‐
ingful (e.g., “page1,” page2,” etc.). There is no need to offer link strings that humans
can easily read. See the “Discussion” section for more on link values for navigation.

The exit link here might point to a temporary resource that asks for confirmation of
exiting the navigation (and maybe losing some collected state data). This is common
when creating the list is costly and exiting would mean throwing away all that work.
The exit link may also point to a resource that allows the API consumer to store,
collect, or in some other way take advantage of accumulated state data (e.g., a list of
selected records, the last one read, etc.).

Here is a resource that might be returned once the end of the list is reached:

{"collection" : {
 "title" : "Customer List",
 "links" : [
 {"rel" : "self list collection", "href" : "/customers/list/ht5r"},

360 | Chapter 7: Hypermedia Workflow

 {"rel" : "home", "href" : "/customers/"},
 {"rel" : "first", "href" : "/customers/list/q1w2"},
 {"rel" : "previous", "href" : "/customers/list/t5y6"},
 {"rel" : "exit", "href" : "/customers/p0o9"}
],
 "items" : [
 ...
]
}}

Notice that there is no link for the next or last actions since they would be inappro‐
priate here.

Finally, if the navigation supports selecting or viewing individual resources from the
list, you can use the select link identifier:

{"collection" : {
 "title" : "Customer List",
 "links" : [
 {"rel" : "self list collection", "href" : "/customers/list/ht5r"},
 {"rel" : "home", "href" : "/customers/"},
 {"rel" : "first", "href" : "/customers/list/q1w2"},
 {"rel" : "previous", "href" : "/customers/list/t5y6"},
 {"rel" : "next", "href" : "/customers/list/r4e3"},
 {"rel" : "exit", "href" : "/customers/p0o9"}
],
 "items" : [
 { "href" : "/customers/aq1sw2de3",
 "data" : [
 ...
],
 "links" : [
 {"rel" : "select item", "href" : "/customers/aq1sw2de3"}
 },
 ...
]
}}

Discussion
Supporting lists usually seems easy at first—when the list is small. But the effort
quickly ramps up as the list begins to grow. It is a good strategy to assume you are
supporting a list with thousands of members and implement accordingly. Don’t
assume it will be easy to access, filter, or display list contents. Do your best to limit the
effort involved in responding to list requests, and you’ll avoid lots of problems.

It is common to want to offer metadata controls that allow API consumers to control
the list of each page of data (e.g., 50, 100, etc.). You can use client preferences (see
Recipe 5.5) to handle that. Be sure to always have a default value for page size, too. A

7.11 Enabling Standard List Navigation | 361

reasonable value varies depending on the list of each resource returned in the list.
Usually, 50 is a good start.

When returning resources in a list, you don’t need to include the complete resource.
Often it is a good idea to just return basic information like summary data, commonly
used fields, and a link to a detailed view (via select links).

Keep in mind it may be costly to generate a list resource. For example, listing all the
computers connected to the server on the network might be a long process. In this
case, you can compute partial lists—enough to complete a single page—and only
compute the following pages if and when the API consumer asks for another one.

It may seem like a good idea to support navigation that allows API consumers to “go
to page 11” in your list. But this can be an expensive request. It assumes you already
know the contents of the complete list. If you are listing all the users in a live chat
room, that membership is likely to change frequently. Even in cases where the list is
fixed, if it is quite long (thousands of items), you may be forced to spend vital run‐
time resources trying to navigate to page 133 in a list of 600 pages.

You can enhance your list navigation support by adding search capabilities (see
Recipe 6.4). However, it can be difficult to navigate through a filtered list of data. If
you offer this option, it may make sense to internally create a single snapshot of the
filter collection, store it in memory, and use that in-memory list as your source for
navigation. Of course, now you need to pay the cost of creating a complete filtered
collection before you can offer the first page of data!

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.6, “Returning HTTP 200 Versus HTTP 400 for Data-Centric Queries”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.9, “Returning Most Recently Used Resources”
• Recipe 7.13, “Using State-Watch to Enable Client-Driven Workflow”

362 | Chapter 7: Hypermedia Workflow

7.12 Supporting Partial Form Submit
While input forms are a key element of any hypermedia-driven system, they can be
tricky to navigate, especially for machines or automated processes. This recipe offers
a simple, standard way to handle form input that reduces the chances for rejected
inputs and runtime. This recipe was inspired by UX pioneer Donald Norman, who
said, “Think of each action by the user as an attempt to step in the right direction.”

Problem
Input forms, especially complex ones, can be difficult for users to successfully com‐
plete, especially when the user is a machine rather than a person. Features like depen‐
dent drop-down lists, detailed client-side validation, and just long lists of input
increase the likelihood that the submission will be rejected by the server. How can
you design and implement input forms that are easier to navigate and more likely to
be completed successfully? How can you make input forms more “machine-friendly”?

Solution
You can do a great deal to improve input forms by supporting the Partial Form Sub‐
mit (PFS) recipe. The notion of PFS is that the forms can be submitted to the server
even if they have not yet been completed. This allows the client application to fill in
just parts of the form, save those inputs to the server, and then add more inputs along
the way. Once all the inputs have been filled in, the client application can execute a
“final submit”—telling the service that all inputs are complete and signaling the ser‐
vice to do any post-input processing.

This recipe is related to the work-in-progress (WIP) recipe (see
Recipe 7.10). But this recipe doesn’t support long-running (e.g.,
hours/days), multipage input processes.

The PFS recipe is particularly useful for machine-driven client applications since they
can submit one input field at a time and ask the server to validate and store that one
input. This makes fixing validation errors much simpler for the machine-driven cli‐
ent. Implementing PFS means returning an input form with a collect of inputs and a
set of submission options, including:

partialSubmit

Submit this form and hold on to the inputs. It is not yet complete.

resetSubmit

Clear any inputs you have so we can start again.

7.12 Supporting Partial Form Submit | 363

refreshSubmit

Return the current state of the form (including any supplied inputs).

cancelSubmit

Cancel the input process completely and clear any inputs you have.

finalSubmit

The client app is done supplying inputs; submit this for final processing.

As each input is submitted (via partialSubmit), the service can check to make sure it
contains valid content. If it does, the server should store the inputs and then return
an updated form to the client application that includes the filled-in values as well as
any remaining empty inputs. This continues until the client application selects cancel
Submit or finalSubmit. At any time, the client application can also use resetSubmit
to reset the form and start the process form the beginning.

Figure 7-9 shows the PFS workflow.

Figure 7-9. Partial Form Submit workflow

364 | Chapter 7: Hypermedia Workflow

Example
Consider the following HTML input form:

<form name="search-users" action="/users/filter" method="GET">
 <select name="type">
 <option>customer</option>
 <option>prospect</option>
 </select>
 <select name="region">
 <option>west</option>
 <option>south</option>
 </select>
 <input type="text" name="name" />
 <input type="text" name="salesRep" />
 <input type="submit" name="submit" value="partialSubmit" />
 <input type="submit" name="submit" value="refreshSubmit" />
 <input type="submit" name="submit" value="resetSubmit" />
 <input type="submit" name="submit" value="cancelSubmit" />
 <input type="submit" name="submit" value="finalSubmit" />
</form>

Now, let’s assume that we have written an autonomic bot that looks for all the records
where the type is set to “customers” and the salesRep value contains “Mork.” This
bot is pretty simple and fills in values one at a time before executing a finalSubmit
action. So our bot would make the following three HTTP requests:

GET /users/filter?type=customer&submit=partialSubmit
GET /users/filter/?salesRep=Mork&submit=partialSubmit
GET /users/filter/?submit=finalSubmit

As each input is sent individually, the service interface can perform validation and
provide feedback. For example, if the bot tried to send type=friend as the first input,
the service can send an HTTP 400 status response to help the client fix the problem
and try again (via refreshSubmit to reload the form).

Note that the PFS recipe does not assume all inputs are required to execute the final
Submit action. Also, once finalSubmit has been sent, the service interface can still
perform a validation that might result in a 400 HTTP status with corrective action
required.

Discussion
The key point of this recipe is to make it easy for users of any kind to submit data to
the server. By separating “save my data” from “process this submission,” you can sim‐
plify interactions and make it easier to fix errors in the input. This really pays off
when you are using an automated client to submit that data.

This recipe actually makes it harder to create input forms that require “dependent
input validation.” For example, it is difficult to support any rule that states, “If you

7.12 Supporting Partial Form Submit | 365

select customer in inputA, you must not fill in any value for inputB and so forth.” In
this case, you can write code on the server that uses the finalSubmit action to vali‐
date these dependencies and return error messages with hints for solving the prob‐
lem. If at all possible, you should avoid these cases, as they can be very difficult for
automated clients to resolve.

Since the server is returning the form each time with more inputs filled in, it is also
possible for client applications to modify values for already-submitted fields. This is
perfectly fine and can be especially handy for human users as they may recognize
mistakes made earlier in the process.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.10, “Supporting Links and Forms for Nonhypermedia Services”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.7, “Using Media Types for Data Queries”
• Recipe 7.9, “Returning Most Recently Used Resources”
• Recipe 7.10, “Supporting Stateful Work in Progress”
• Recipe 7.15, “Synchronous Reply for Incomplete Work with 202 Accepted”

7.13 Using State-Watch to Enable Client-Driven Workflow
While most recipes for workflow services focus on examples where the service knows
the end goal through code (Recipe 7.3), DSL (Recipe 7.4), or document (Recipe 7.5),
there are times when the servers do not know what goal the API consumer (client)
has in mind. In these cases, you can use this recipe to create a service workflow where
the end goal is known by the client alone and the services provide information to help
that client determine when the goal is reached.

Problem
There are times when the client application knows the desired end state and the serv‐
ices do not. In these cases, how do you design workflow to meet client (API con‐
sumer) needs? When is this client-driven goal applicable? What are the pitfalls of
allowing client applications to “drive the workflow”?

366 | Chapter 7: Hypermedia Workflow

Solution
The solution to this problem of client-driven workflow was first mentioned in Recipe
4.16 when we talked about Defined End Goals (DEGs) and Defined State Goals
(DSGs). This recipe focuses on how to enable DSGs. The key to making this work is
making sure there is service interface support for sharing client-selected state vari‐
ables. That means supporting a way for client applications to tell services what data to
return.

But GraphQL?!?
The data-centric protocol GraphQL is an excellent example of a platform that sup‐
ports client-driven queries. I won’t be using GraphQL in my example here, but if you
already have GraphQL in place in your technology mix, you can apply this recipe
using that platform.

What is state-watching?

Consider an example where a client application (temp03) needs to monitor the tem‐
perature sensors in a large building. That client application “knows” a range of proper
temperatures for, let’s say, the third floor of the building. It also knows that it needs to
monitor the temperature sensors on that floor and operate the thermostat for the
same zone. This means the client needs to get feedback on each thermo-sensor on
the floor and access to control the thermostat as well.

Now consider another application (light03) that needs to monitor movement on the
same floor and turn on/off the overhead lights depending on whether people are
moving around in the rooms. This application needs access to all the motion-senors
and light-switches on the third floor.

Finally, let’s assume there is a single building management service interface, one that
supports access to all the sensors and all the actuators throughout the building. This
is the service that temp03 and light03 “talk to” to do their work. The ideal situation is
to have each client request only the data properties it is interested in monitoring and
only returning the action elements (FORMS) that each application wants to access.

Client applications need a way to tell the service what information it wants to see for
each HTTP request response. This amounts to the client telling the service interface
with state values it will “watch.” Hence the name of this recipe: state-watch.

Is this watchable?
To make this work, the service interface needs to be able to tell the API consumer just
what data properties are “watchable”—which properties can be selected for inclusion

7.13 Using State-Watch to Enable Client-Driven Workflow | 367

https://graphql.org

in HTTP responses. This is essentially an instance of the list navigation recipe (Recipe
7.11). Since that has been covered earlier, I won’t repeat the details here. For our pur‐
poses, let’s assume the list of available, watchable elements includes all the motion
sensors, thermo-sensors, light switches and thermostats for the building. Let’s make
this easier and assume that our application identity only has access to the element on
the third floor of the building. That means making a call to the watchList will return
available elements.

Now we need to be able to tell the service just which elements on that list each client
applications wishes to “see.”

I’ll take motion sensors for the third floor, please
There are three ways a client application can signal the desired elements to monitor,
each with their own advantages and drawbacks:

Query string
The simplest way to pass the list of watched elements is to include them as part of
an HTTP query string. The advantage here is that it is a well-known and easily
supported solution. The drawback is that the list may get quite long and risks
complicating URL parsing for intermediates.

HTTP prefer headers
RFC 7240 defines the Prefer header, which allows clients to pass metadata infor‐
mation about how the client prefers the service to modify the HTTP response
body. The advantage is that this solution keeps the information out of the URL
and has an established standard. The drawback is that there is currently no pref‐
erence property defined (see HTTP Preferences) for use with state-watch lists.
However, you can apply to define one, if you wish, or use this header without
registering a preference property.

State-watch resource
Another solution is to define a state-watch resource to associate with client
requests. In this case, a separate resource can be used to host the list of elements
the service should return. A pointer to this resource can be shared via a Link
header with the rel="watch" identifier. The advantage is that it is a clear and
simple solution. The drawback is that it is a separate resource that both the API
consumer and API provider must honor at runtime.

Data query body
To prevent problems with long URLs, the state elements to watch can be passed
as part of a request body. This is how GraphQL works. The advantage is that
there is existing technology for doing this. The drawback is that it requires the
use of an unsafe HTTP method (PUT or possibly POST), and this complicates
caching, retries, and other issues.

368 | Chapter 7: Hypermedia Workflow

https://oreil.ly/Fu5xQ
https://oreil.ly/GW99A

For various reasons, I recommend the state-watch resource solution. It is the most
compatible with proper HTTP protocol usage and avoids the problems related to
long lists of data properties. It also allows clients to set their preferences at the start of
a workflow session and not have to resend those preferences until it is time to modify
the list.

State-watch properties, resources, and actions
Supporting the state-watch pattern involves the follow properties: resources and
actions. State-watch properties include:

watchElementID

Unique identifier of a watch element

watchElementURL

URL of a watch element

watchElementName

Text name of a watch element

watchElementValue

Current value of a watch element

watchElementTag

Filter tag of a watch element

Here are the state-watch resources:

watchListResource

Contains the list of all available watchable elements

watchResource

Represents the list of selected watchable elements

State-watch actions include:

doWatchClear

Unsafe action to clear any selected watch elements

doWatchCreate

Unsafe action to create a new list of selected watch elements

doWatchUpdate

Unsafe action to update the current list of selected watch elements

goWatchList

Safe action to return the list of available watchable elements

7.13 Using State-Watch to Enable Client-Driven Workflow | 369

goWatchResource

Safe action to return the list of selected watchable elements

Typical State-Watch Interaction
Using the state-watch resource option as a guide, the process of selecting and report‐
ing to the server state elements the client prefers to watch would look like this:

1. The client locates the rel=watch link for the service (see Recipe 7.8).
2. The client selects the elements it wishes to watch.
3. The client uses the updateWatchList form and sends the list of watched elements

to the service interface using a unique URL generated by the API client.
4. Now, on each request to the service (e.g., listStates), the status of each element

is included in the response.
5. This continues until the client wishes to update (or clear) the watchList.

See Figure 7-10 and the “Example” section for details.

Figure 7-10. State-watch workflow

Example
A service interface that supports the state-watch pattern can advertise this using an
HTTP link header and/or a link within the body of a response:

370 | Chapter 7: Hypermedia Workflow

**** REQUEST ****
GET /building
Host: api.example.org
Accept: application/vnd.siren+json
...

**** RESPONSE ****
200 OK
Content-Type: application/vnd.siren+json
Link: <<http://api.example.org/building/elements/list>>; rel="watchList"
Link: <<http://api.example.org/building/selected;t6r5e4ed>>; rel="watchSelected"

{"class": ["building"],
 "links" : [
 {"rel" : ["self", "home"],
 "href": "/building"},
 {"rel" : ["watchList", "collection"],
 "href": "/building/elements/list"},
 {"rel" : ["watchSelected", "collection"],
 "href": "/building//building/selected;t6r5e4"}
],
 "properties": {...},
 "entities": {...}
}

Note that there are two links in the response related to the state-watch pattern. The
first (rel="watchList") is the list of available elements.

It is important that each API consumer have its own associated
rel=watchSelected resource. Generating this URL is mostly the
responsibility of the API consumer (remember, the consumer is
driving the workflow!). See the “Discussion” section for more on
this topic.

Clients can use this to review and select elements to watch. The second link
(rel=watchSelected) is the list of currently selected elements that are returned with
each response:

**** REQUEST ****
GET /building/elements/list
Host: api.example.org
Accept: application/vnd.siren+json

**** RESPONSE ****
200 OK
Content-Type: application/vnd.siren+json
Link: <<http://api.example.org/building/elements/list>>; rel="watchList"
Link: <<http://api.example.org/building/selected;t6r5e4ed>>; rel="watchSelected"

{"class": ["building"],

7.13 Using State-Watch to Enable Client-Driven Workflow | 371

 "links" : [
 {"rel" : ["home"],
 "href": "/building"},
 {"rel" : ["self", "watchList", "collection"],
 "href": "/building/elements/list"},
 {"rel" : ["watchSelected", "collection"],
 "href": "/building/elements/selected"}
],
 "entities" : [
 {"class": ["watch", "element"],
 "properties": {
 "id": "q1w2e3r4",
 "href": "/building/elements/list/q1w2e3r4",
 "type": "thermo-sensor",
 "name": "ts-01",
 "location": "Third floor"
 },
 ...
 {"class": ["watch", "element"],
 "properties": {
 "id": "u8y7t6r5",
 "href": "/building/elements/list/u8y7t6r5",
 "type": "thermostat",
 "name": "stat-0301",
 "location": "Third floor"
 }
],
 "actions": [
 {
 "name": "select-elements",
 "title": "Select Elements",
 "method": "PUT",
 "href": "http://api.example.org/building//building/selected;t6r5e4",
 "type": "text/plain",
 "fields": [
 { "name": "elements", "type": "value": "q1w2e3r4,u8y7t6r5" }
]
 }
]
}

In this example, the client will send two elements to the watchSelected list
(q1w2e3r4,u8y7t6r5). Now each response for the related resource (/building/) will
include the actual status of these two elements:

GET /building
Host: api.example.org
Accept: application/vnd.siren+json
...

**** RESPONSE ****
200 OK

372 | Chapter 7: Hypermedia Workflow

Content-Type: application/vnd.siren+json
Link: <<http://api.example.org/building/elements/list>>; rel="watchList"
Link: <<http://api.example.org/building/selected;t6r5e4ed>>; rel="watchSelected"

{"class": ["building"],
 "links" : [
 {"rel" : ["self", "home"],
 "href": "/building"},
 {"rel" : ["watchList", "collection"],
 "href": "/building/elements/list"},
 {"rel" : ["watchSelected", "collection"],
 "href": "/building/elements/selected"}
],
 "properties" {...},
 "entities": [
 {"class":["thermo-sensor"],"id":"q1w2e3r4","name":"ts-01","temp": "-3C"},
 {"class":["thermostat"],"id":"u8y7t6r5","name":"stat-0301","state": "off"},
 ...
],
 "actions": [...]
}

Note that the two selected elements have been included in the response to the /build
ing resource. It is also possible to get just the list of selected elements:

GET /building//building/selected;t6r5e4
Host: api.example.org
Accept: application/vnd.siren+json
...

**** RESPONSE ****
200 OK
Content-Type: application/vnd.siren+json
Link: <<http://api.example.org/building/elements/list>>; rel="watchList"
Link: <<http://api.example.org/building/selected;t6r5e4ed>>; rel="watchSelected"

{"class": ["watchSelected"],
 "links" : [
 {"rel" : ["home"],
 "href": "/building"},
 {"rel" : ["watchList", "collection"],
 "href": "/building/elements/list"},
 {"rel" : ["home", "watchSelected", "collection"],
 "href": "/building/selected;t6r5e4"}
],
 "properties" {...},
 "entities": [
 {"class":["thermo-sensor"],"id":"q1w2e3r4","name":"ts-01","temp": "-3C"},
 {"class":["thermostat"],"id":"u8y7t6r5","name":"stat-0301","state": "off"},
 ...
],
 "actions": [
 {"name": "updateWatchList", "method": "PUT", ...},

7.13 Using State-Watch to Enable Client-Driven Workflow | 373

 {"name": "clearWatchList", "method": "DELETE", ...}
]
}

In this example, not only were the selected elements returned (with their current val‐
ues), there are also two forms in the response. The updateWatchList action can be
used to modify the watch list, and the clearWatchList action can be used to quickly
clear all the elements from the watch list.

Using our previous example of two API consumers (one watching temperatures and
the other watching motion and lighting), we could construct another scenario.

Discussion
The state-watch pattern works well when the API consumer needs to evaluate a small
set of available data to make a decision and/or commit an action. Monitoring sensors
of some type (temperatures, motion, liquids, etc.) is a good use case for the state-
watch pattern.

This recipe is one of the more complicated ones in the collection. It
requires both client and server to share a resource that’s created—at
runtime—by the server based on input (unique ID) from the client.
Both parties then need to be able to recall that URL when passing
HTTP requests and responses.

Because the state-watch pattern relies on two key HTTP resources (the list of avail‐
able elements to watch and the list of watched elements for each API client), you need
to be clear on how to create a unique URL for the client’s selected elements. The
details of the URL are not interesting, but you will need to be sure the client can gen‐
erate a unique ID for its own watchResource (see Recipe 5.14), and that the client can
remember the URL and pass it to the service when appropriate. This last step usually
means the service should return the URL with each response to that client (via HTTP
headers and/or the body).

In the examples shown here, the updateWatchList form uses a text/plain body to
send a comma-delimited list of watched elements. You can use other serializations
but will need to work out a way for client applications to know ahead of time how to
parse the watch list responses.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.14, “Validating Incoming Data”

374 | Chapter 7: Hypermedia Workflow

• Recipe 4.15, “Maintaining Your Own State”
• Recipe 4.16, “Having a Goal in Mind”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 7.7, “Exposing a Progress Resource for Your Workflows”
• Recipe 7.15, “Synchronous Reply for Incomplete Work with 202 Accepted”

7.14 Optimizing Queries with Stored Replays
For systems that rely heavily on custom queries, this recipe offers a standardized way
to create, manage, and execute stored queries.

You might have expected this recipe to appear in Chapter 6. How‐
ever, since this recipe involves several resources acting in concert, I
decided to place it here in the workflow chapter.

Problem
Some queries are complex and/or expensive to run. Sometimes HTTP queries require
extensive filtering parameters, resulting in a very long query string. Since most HTTP
servers have a fixed limit on the length of a URL, complex queries may be misinter‐
preted as a security attack. What can you do to make storing and replaying those
complex queries safe, cheap, and easy? Along the way, how can you better manage the
list of collected queries, even implementing a simple sharing support to allow users or
machines to author and then “publish” those complex queries for others to use?

Solution
The first step to making complex queries safe and easy to use is to implement the
query itself as a resource. That means expressing the query details as an HTTP body
and then using that message body to create a new query resource that can then be exe‐
cuted directly upon request. That’s step two, using the query resource URL to execute
the query and return results in the response.

Not All URLs Are Equal
There is a slight trick buried in this recipe. API consumers need to know the URL for
executing a query and may also need to know the URL for editing the query. See the
“Example” section to see how this recipe handles this.

7.14 Optimizing Queries with Stored Replays | 375

Essentially, what you’re doing is creating a collection of query resources, and that col‐
lect needs to be managed, too. This recipe takes advantage of list navigation (Recipe
7.11) to support listing, filtering, editing, and removing query resources.

Finally, an optional element for this recipe is the shareQuery action. This allows you
to support sending the query resource to someone else to use and/or set the “owner”
of the query resource for future management.

There is a collection of metadata associated with stored queries. You can use these
values (and others, if you wish) to manage and track the queries that are created and
replayed over time:

identifier

Unique identifier for the stored query.

URL

URL of this delayed response document.

resourceQuery

Complete (original) HTTP query.

cacheTTL

How long (in milliseconds) the response should be cached by the client.

cachingDirectives

Additional caching directives for the query.

description

Human-readable text that describes this stored query.

owner

Identifier (URL or text) of the identity that controls this query resource.

tags

Free-form string space-separated values. Use this for filtering or otherwise
grouping stored queries.

dateCreated

Indicates the date/time (UTC) this replay resource was first created.

dateUpdated

Indicates the last date/time (UTC) this replay resource was modified.

dateLastRun

Indicates the last date/time (UTC) this stored query was executed.

The resourceQuery property holds the full query string passed to the service when
the query was created. This may be updated, too. The cacheTTL and cachingDirec
tives properties may contain details on the kind of caching metadata that should be

376 | Chapter 7: Hypermedia Workflow

returned with the query response. The owner and tags properties are handy for keep‐
ing track of management details like who is responsible for the resource and how you
can group or filter this resource in the collection.

Figure 7-11 shows the stored query replay workflow.

Figure 7-11. Stored query replay workflow

Example
This recipe has two distinct parts. The first part covers creating and replaying query
resources. The second part covers managing the list of stored query resources.

Creating and replaying query resources
The first action creates the query resource and stores it on the server. Here’s how that
looks:

**** REQUEST ****
PUT /queries/q1w2e3r4
Content-Type: application/x-www-form-urlencoded
Accepted: application/vnd.collection+json
Length: NN
If-Not-Match: "*"

type=customer®ion=south&name=Andrews&balance-is-great-then=10000
&past-due-days-is-great-than=90&salesrep=Mork

7.14 Optimizing Queries with Stored Replays | 377

**** RESPONSE ****
200 OK
Content-Type: application/vnd.collection+json
Length: NN

{"collection" : {
 "title" : "Query Results",
 "metadata" : [
 {"name": "q-sent", "value": "type=customer®ion=south&name=Andrews& +
 balance-is-great-then=10000&past-due-days-is-great-than=90&salesrep=Mork"},
 {"name": "q-datetime", "value": "2024-12-12:00:12:0012TZ"},
 {"name": "q-status", "value": "sucess"},
 {"name": "q-seconds", "value": "120"},
 {"name": "q-count", "value": "100"},
 "links" : [...]
 "items" : [...]
}}

As you can see, the API consumer sent the complex query as a PUT to create the new
resource (see Recipe 5.15 for details on this recipe). Assuming there are no problems,
the service creates the new query resource, executes the query, and returns the results.
You’ll also notice that the server has returned query metadata (see Recipe 6.5) in the
response. This is not a requirement but can be especially handy when relying on this
reply recipe to execute queries.

Now that the query is stored on the server, API consumers can call the query
resource directly to replay the query:

**** REQUEST ****
GET /queries/q1w2e3r4
Accept: application/vnd.collection+json
...

**** RESPONSE ****
200 OK
Cache-Control: public, max-age: 3600
ETag: "w/ki8ju7hy6gt5"
...

{"collection" : {
 "title" : "Query Results",
 "metadata" : [...],
 "links" : [...],
 "items" : [...]
}}

Here, the API consumer just needs to issue an HTTP GET (not PUT) to return the
results. In this case, the service has “replayed” the stored query and returned updated
results. Note also the use of the Cache-Control header to give the consumer direc‐
tives on how long to hold the query locally. See Recipe 6.9 for more on this recipe.

378 | Chapter 7: Hypermedia Workflow

Managing stored query resources
Creating and replaying stored queries is only part of this recipe. The other part
involves managing the collection of stored queries. That means offering list, filter,
update, and remove actions from Recipe 7.11. In this recipe, I also introduce the
optional share action.

A good way to expose the management elements of the recipe is to include links in
the query responses. They can be shipped as part of the media type body:

{"collection" : {
 "title" : "Query Results",
 "metadata" : [...],
 "links" : [
 {"rel":"list", "href":"http://api.company.org/queries/list"},
 {"rel":"filter", "href":"http://api.company.org/queries/filter"},
 {"rel":"update", "href":"http://api.company.org/queries/q1w2e3r4#update"},
 {"rel":"share", "href":"http://api.company.org/queries/q1w2e3r4#share}
]
 "items" : [...]
}}

The links can also appear as part of the HTTP headers collection. In the following
example, the current user context only has permission to share this query, not edit or
remove it or see the complete list:

**** RESPONSE ****
200 OK
Content-Type: application/vnd.collection+json
Link: <<https://api.company.org/queries/q1w2e3r4#share>>; rel=share

I won’t go into the details of the list, filter, update, and remove actions here.
Check out Recipe 7.11 for that. But I will add a comment here about the URLs shown
in the preceding example. There’s a bit of a challenge when creating URLs for this
recipe. We need a URL for executing the query, and we need a URL managing the
query (e.g., read, edit, delete, and share).

There are a few options available. The one I use is to modify the query resource URL
to signal to the service which actions I intend. This might annoy some who don’t like
to see verbs in URLs. If you wish, you can use a different URL for managing the
query resource (e.g., https://api.company.org/queries/list/q1w2e3r4) than for executing
it (https://api.company.org/queries/q1w2e34).

The exact URL you use is up to you. Just remember that you’ll need to keep track of
them at runtime and keep the API consumer informed of the differences in order to
implement this recipe.

7.14 Optimizing Queries with Stored Replays | 379

https://api.company.org/queries/list/q1w2e3r4
https://api.company.org/queries/q1w2e34

Discussion
One of the big advantages of implementing the replay recipe is to solve the problem
of very long query strings. I see lots of use of HTTP POST to support large query
strings; while it works, you don’t get the advantage of caching on POST. The “create-a-
query-resource-then-execute-it” works because you can return the URL of the new
resource and do a simple GET on that instead. That way you get all the options of
caching in the bargain.

This recipe really pays off when you replay the queries later. If you don’t want to do
that, you can skip implementing the resource management part completely and just
support the PUT/POST create and execute part. In those cases, you can keep the created
resources around for a short time and then just delete them. Later attempts to call
those temporary URLs will just return an HTTP 410 error.

The owner metadata is listed here but there is nothing to cover, just how to imple‐
ment that feature. Typically, this gets folded into user or machine identities and
related security issues. That is more than I cover in this edition of the book.

Sharing queries is a way to make it easy for people to reuse existing resources. I often
make all the replay queries “public” and include an interface that allows users or
machines to select one or more of them and “claim” them for their own use. If you do
this, you’ll need to deal with who can edit the reusable queries, and you might even
need to implement a copy action to allow people to get a copy of their own to edit
without changing the source query.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 4.14, “Validating Incoming Data”
• Recipe 5.4, “Expressing Internal Functions as External Actions”
• Recipe 6.4, “Leveraging HTTP URLs to Support ‘Contains’ and ‘AND’ Queries”
• Recipe 6.9, “Improving Performance with Caching Directives”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”

380 | Chapter 7: Hypermedia Workflow

7.15 Synchronous Reply for Incomplete Work
with 202 Accepted
There are times when the work that needs to be completed may take some time. In
these cases, HTTP (which relies on a synchronous request/response pattern) supports
a 202 Accepted response status. You can use this status to create a pattern that allows
for delayed responses that may take hours or even days to resolve.

Problem
Sometimes you know ahead of time that a resource request is likely to take a long
time to complete—more than a few seconds. In this case, you need to employ a
“delayed response” pattern that tells the client, “This will take some time,” and sup‐
plies enough metadata to allow the client to decide how to handle this delay. So, what
does it take to establish and support this pattern? What metadata should be supplied
to the client? What possible workflow options should be supported?

Solution
In cases where the response to an HTTP request is likely to be delayed (take more
than a few seconds), you can use a delayed response pattern. This is done by return‐
ing a 202 Accepted status from the service along with metadata (via body and/or
headers) that informs the client application of the status of the request, plus options
to take additional action (like refresh or cancel).

The initial response can be returned even before the requested work (e.g., save a
record, compute a regression, etc.) is started. See the “Example” section for a typical
response body and possible headers.

Response bodies for the delayed response can include the following metadata:

identifier

Unique identifier for this delayed response

acceptedURL

URL of this delayed response document

completedURL

URL of the completed status resource

failedURL

URL of the failed status resource

description

Human-readable text that describes this document

7.15 Synchronous Reply for Incomplete Work with 202 Accepted | 381

refresh

A value (in milliseconds) that represents the refresh interval

percentCompleted

A value (0–100) of completion

status

Indicates document status (pending, working, completed, or failed)

dateCreated

Indicates the date/time (UTC) this delayed response was first created

dateUpdated

Indicates the last date/time (UTC) this delayed response was modified

dateEstimated

Indicates the date/time (UTC) this delayed request is expected to complete

Common actions that may also appear include:

goAccepted

Navigate to the delayed response resource (safe)

doCancel

Request to cancel this outstanding delayed task using DELETE (idempotent)

goCompleted

Navigate to the completed resource (safe)

goFailed

Navigate to the failed resource (safe)

goHome

Navigate to the “Home” resource (safe)

Some of this metadata can be returned using Link headers, too.

Figure 7-12 shows an HTTP 202 Accepted workflow.

382 | Chapter 7: Hypermedia Workflow

Figure 7-12. 202 Accepted workflow

Example
A typical example of the delayed response pattern looks like the following.

First, the API consumer sends a request to the service interface, and the service inter‐
face starts (or queues up) the work and returns a 202 Accepted response:

**** REQUEST
PUT /services/compute-results HTTP/1.1
Content-Type: application/vnd.collection+json
...

{"collection": {...}}

**** RESPONSE
202 Accepted HTTP/1.1
Content-Type: application/vnd.collection+json
Link: <http://api.example.org/services/compute-results/q1w2e3>;rel=self;
 refresh=60000
Link: <http://api.example.org/services/cancel-form/q1w2e3>;rel=cancel

{"collection":
 {
 "links": [

7.15 Synchronous Reply for Incomplete Work with 202 Accepted | 383

 {"rel":"self", "name":"acceptedURL",
 "href":"/services/compute-results/q1w2e3"}
],
 "items": [
 {
 "href": "/services/compute-results/q1w2e3",
 "data" : [
 {"name":"identifier", "value":"q1w2e3"},
 {"name":"description",
 "value":"Compute net present value for property"},
 {"name":"refresh", "value":"60000"},
 {"name":"percentCompleted", "value":"10"},
 {"name":"status", "value":"working"},
 {"name":"dateCreated", "value":"2024-02-01:22:11:00"},
 {"name":"dateUpdated", "value":"2024-02-01:22:11:00"},
 {"name":"dateEstimated", "value":"2024-02-01:22:15:00"}
]
 }
]
 }
}

Next, the API consumer uses metadata in the response to periodically refresh the DR-
Doc (delayed response document) to check the status of the work:

**** REQUEST
GET /services/compute-results/q1w2e3 HTTP/1.1
Accepted: application/vnd.collection+json
...

**** RESPONSE
200 OK HTTP/1.1
Content-Type: application/vnd.collection+json
Link: <http://api.example.org/services/compute-results/q1w2e3>;rel=self;
 refresh=60000
Link: <http://api.example.org/services/cancel-form/q1w2e3>;rel=cancel

{"collection":
 {
 "links": [
 {"rel":"self", "name":"acceptedURL",
 "href":"/services/compute-results/q1w2e3"}
],
 "items": [
 {
 "href": "/services/compute-results/q1w2e3",
 "data" : [
 {"name":"identifier", "value":"q1w2e3"},
 {"name":"description",
 "value":"Compute net present value for property"},
 {"name":"refresh", "value":"60000"},
 {"name":"percentCompleted", "value":"75"},
 {"name":"status", "value":"working"},

384 | Chapter 7: Hypermedia Workflow

 {"name":"dateCreated", "value":"2024-02-01:22:11:00"},
 {"name":"dateUpdated", "value":"2024-02-01:22:14:00"},
 {"name":"dateEstimated", "value":"2024-02-01:22:15:00"}
]
 }
]
 }
}

Once the DR-Doc has a status of completed or failed, the API consumer follows the
appropriate link:

**** REQUEST
GET /services/compute-results/q1w2e3 HTTP/1.1
Accepted: application/vnd.collection+json
...

**** RESPONSE
200 OK HTTP/1.1
Content-Type: application/vnd.collection+json
Link: <http://api.example.org/services/npv/p0o9i8u7y6>;rel=completed
Link: <http://api.example.org/services/compute-results/q1w2e3>;rel=self;
 refresh=60000

{"collection":
 {
 "links": [
 {"rel":"self", "name":"acceptedURL",
 "href":"/services/compute-results/q1w2e3"}
],
 "items": [
 {
 "href": "/services/compute-results/q1w2e3",
 "data" : [
 {"name":"identifier", "value":"q1w2e3"},
 {"name":"description",
 "value":"Compute net present value for property"},
 {"name":"percentCompleted", "value":"100"},
 {"name":"status", "value":"completed"},
 {"name":"dateCreated", "value":"2024-02-01:22:11:00"},
 {"name":"dateUpdated", "value":"2024-02-01:22:16:00"},
 {"name":"dateEstimated", "value":"2024-02-01:22:15:00"}
],
 "links": [
 {"rel":"completed", "href":"/services/npv/p0o9i8u7y6"}
]
 }
]
 }
}

Finally, if available in the response, the API consumer may activate the cancel action
to abandon the request.

7.15 Synchronous Reply for Incomplete Work with 202 Accepted | 385

Discussion
The key to a successful delayed response implementation is to include as much meta‐
data as possible in the interim responses. The most important is the refresh interval
and the status value. dateEstimated and percentCompleted are also helpful values.

Most API consumers will be unable to do much with an unexpected 202 Accepted
HTTP response from the service interface. For this reason it is important to tell API
consumers ahead of time which actions might return a 202 status code. This should
be done in the documentation of the interface itself.

Not all DRs (delayed responses) will support the ability to cancel the request. If the
underlying work is limited to handling a long computation (like our net present value
example) or generating a long report, then supporting cancel is pretty straightfor‐
ward. However, if the request involves changing state somewhere (writing a record,
deleting or adding data for one or more existing records, etc.), then supporting the
cancel option is more involved. See Recipe 7.17 for more on supporting the cancel
option for RESTful web services.

Depending on the representation format used in delayed document responses, the
cancel action might be represented as an inline FORM or a link, or a link to a FORM.
When implementing responses, be sure to follow the conventions for representing
hypermedia actions in the body of the response.

It can be tempting to use HTTP headers to contain lots of delayed response metadata,
but it is best to keep header use to a minimum. This is especially true in cases where
you want to communicate transient information like percentCompleted, dateUpda
ted, status, etc. Including variable data in headers complicates caching.

The actual URL values used throughout the delayed response process (acceptedURL,
completedURL, failedURL, or cancelURL) are not important. It is not important, for
example, that the acceptedURL is the same as the completedURL.

It is a good idea to keep the completed delayed response documentation in storage for
at least some set period of time. They might come in handy for reporting, audit pur‐
poses, internal debugging, or some other needs.

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 3.7, “Enabling Interoperability with Inter-Service State Transfers”
• Recipe 4.6, “Managing Representation Formats at Runtime”
• Recipe 4.9, “Relying on Hypermedia Controls in the Response”
• Recipe 5.4, “Expressing Internal Functions as External Actions”

386 | Chapter 7: Hypermedia Workflow

• Recipe 5.10, “Publishing API Metadata”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 7.10, “Supporting Stateful Work in Progress”

7.16 Short-Term Fixes with Automatic Retries
There will be times when an HTTP request fails due to a network problem. Often, the
network problem is temporary and will resolve itself within a matter of seconds. This
recipe offers a structured way to build in “automatic retries” to your service interface
that allows you to try the unsuccessful network call again before giving up and
returning a 5xx HTTP error.

Problem
There are times when transient network errors or temporary outages will impede the
completion of an HTTP request. What do you need to do to automatically retry the
request in cases where the network problem is intermittent? How do you make sure
that problems that persist (nontransient) don’t end up blocking your service requests
entirely?

Solution
The first thing to keep in mind when arranging to retry requests is that you need to
make sure the request itself is idempotent. In HTTP, GET, PUT, and DELETE are
designed as idempotent on the network. This is usually sufficient, but not always. See
the “Discussion” section for details.

This recipe, like Recipe 7.19, deals with internal server-side pro‐
gramming details; all the elements here should be treated accord‐
ingly. This is not information that should be easily reachable on the
web.

Second, you need to make sure to inspect the initial response to your request to
determine if a retry is warranted. For example, if the response is an HTTP 4xx status
(meaning a client-side problem), then retrying that same request without modifica‐
tion will not result in success. If the error condition is an HTTP 5xx status, it may be
helpful to retry the same request. Finally, if the error happens at the local connection
(e.g., “network connection lost”), then it makes sense to attempt a retry.

7.16 Short-Term Fixes with Automatic Retries | 387

https://oreil.ly/nuhwE

If you’d like to learn more about transient network problems and
how to deal with them, check the article “Transient Fault Han‐
dling” at Microsoft’s Azure documentation portal.

There are a handful of options when it comes to handling transient network prob‐
lems; some are better than others. The following are the reasonable possibilities, in
order of preference, along with some comments:

Exponential backoff (EBO)
The best option is to try an exponential backoff or EBO retry. For example, after
experiencing a failure, you can wait two seconds and try again. If that fails, wait 4
seconds, then 16. It is not a good idea to retry the same request more than three
times (see the “Discusson”).

Incremental backoff (IBO)
You can also arrange an incremental backoff value (e.g., four seconds) for your
repeated attempts. That means you’d first wait 4 seconds, then 8, then 16 before
giving up.

Regular interval retries (RIR)
You can get success by trying at the same regular interval (e.g., every three sec‐
onds). One of the downsides of this approach is that if there are multiple instan‐
ces of the same service attempt retries at the same rate, you could be causing
more problems than you think.

Immediate retry (IR)
If the loss of network is very brief, it could make sense to immediately try again.
This can work if the problem is happening at a gateway or some other cluster
implementation that is using multiple machines to route the same request. If you
use this option, be sure not to try it more than a couple of times since you’re
really not giving much of a chance for network conditions to change.

Randomized retry (RR)
Randomized retries can help avoid bottlenecks caused by IR and other options.
In this case, you can generate a random wait time (keep it within 15 seconds) and
try multiple times. The downside to this technique is that it might randomly gen‐
erate long wait times (all 3 tries over 10 seconds apart) when all you really needed
was to wait a couple of seconds for the network connection to be restored.

Once you settle on an option, you can set up your retry parameters in a configuration
resource (see Recipe 5.5). This resource should established for each service interface
(or workflow task—see Recipe 7.1). The exact metadata in the configuration depends
on which method you choose (see the “Example” section), but here’s a list of impor‐
tant properties for a complete retry block:

388 | Chapter 7: Hypermedia Workflow

https://oreil.ly/al0cp
https://oreil.ly/al0cp

Method

The retry option supported (EBO, IBO, RIR, IR, or RR)

Max-Retries

The maximum number of times the request should be retried

Max-Wait-Seconds

The maximum number of seconds to wait before a retry attempt

Starting-Value-Seconds

The number of seconds to wait before the first retry attempt

Increment-Value-Seconds

The number of seconds to wait for each incremental retry

If the retry attempts fail, the service should report the last HTTP status and request
details received.

Keep in mind that the target service might assume your repeated
attempts are a denial of service attack (see the “Discussion”).

You also need to make sure to record your attempts in a local log file for later review.
You do not need to report this information to the workflow progress record (see
Recipe 7.7) since this is an internal detail that only service interface developers should
see.

Example
The following are example metadata properties you can use when recording retry
options in a configuration file or other resource (see Recipe 5.5). Here is an example
of retry configuration values expressed in XML:

<!-- For EBO methods -->
<retries>
 <method>EBO<method>
 <starting-value-seconds>2</starting-value-seconds>
 <max-retries>3</max-retries>
</retries>

<!-- for IBO method -->
<retries>
 <method>RIR<method>
 <increment-value-seconds>3</increment-value-seconds>
 <max-retries>3</max-retries>
</retries>

7.16 Short-Term Fixes with Automatic Retries | 389

<!-- for RIR method -->
<retries>
 <method>RIR<method>
 <starting-value-seconds>2</starting-value-seconds>
 <increment-value-seconds>3</increment-value-seconds>
 <max-retries>3</max-retries>
</retries>

<!-- for IR method -->
<retries>
 <method>IR<method>
 <max-retries>3</max-retries>
</retries>

<!-- for RR method -->
<retries>
 <method>RR<method>
 <max-retries>3</max-retries>
 <max-wait-seconds>10</max-wait-seconds>
</retries>

The retries block shown here can be added to the existing client preferences docu‐
ment (see Recipe 5.5) or some other configuration resource that the service uses. Be
careful to not expose this internal information to unauthorized parties.

Discussion
This recipe is designed to hide transient network problems and try to resolve them
without disrupting the flow of traffic on the network. This has its downsides. You
may be dealing with a regularly problematic connection and never notice it unless
you inspect your local service logs. For this reason, it’s a good idea to review your
local logs often.

It is important to remember that repeated attempts to execute the same request multi‐
ple times might be flagged as malicious behavior (e.g., a denial of service attack) by
the target service. This includes making the exact same request as well as being the
“source” for lots of repeated requests for various related URLs. Be conservative in set‐
ting up your automatic retries and do everything you can to act as a “good netizen.”

When logging retries, be sure to log them as warnings and not errors. Once the
retries fail, you can report the last attempt as an error. This keeps your logs easier to
read and process when you are just looking for retries, for example.

If your log review shows the same services repeatedly causing retry attempts, consider
fixing that connection (if you can) or replacing the service with something more
reliable.

390 | Chapter 7: Hypermedia Workflow

The EBO approach is handy for M2M interactions. They will not be bothered by the
growing lag time between attempts. If you are coding a human-to-machine interface
(e.g., a UI instead of an API), the better approach is to implement an IR retry and
stop sooner.

Keep in mind that any delays in making requests may get compounded by a long set
of sequential actions. For example, if you have 3 sequential requests going through
the same faulty gateway and your maximum wait time is 10 seconds for 3 attempts,
those 3 requests might add up to as much as 90 seconds of delay. The only way to
avoid this possibility is to rely on workflow-compliant services (see Recipe 7.1) that
support jobMaxTTL and taskMaxTTL options.

Conversely, when applying retries to a set of parallel actions, the maximum delay in
this case might be limited to 30 seconds—still a long time!

See Also
• Recipe 3.5, “Expressing Actions at Runtime with Embedded Hypermedia”
• Recipe 3.8, “Designing for Repeatable Actions”
• Recipe 5.12, “Standardizing Error Reporting”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 7.7, “Exposing a Progress Resource for Your Workflows”
• Recipe 7.17, “Supporting Local Undo or Rollback”

7.17 Supporting Local Undo or Rollback
Whenever possible, your service interface should offer API consumers an undo
option—the ability to reverse the last action. This might be reversing a data update,
removing the resource that was just created, or unwinding a process that was exe‐
cuted previously. There are a few challenges to face, including the likelihood that the
underlying service does not offer an undo action on its own. However, that doesn’t
mean the API can’t offer one anyway.

Problem
It is a good practice to support an undo option for the most recent interface action
(e.g., add, edit, or delete). However, not all services (the code behind the API) will
offer an undo option. What does it take to support undo even for cases where serv‐
ices do not support it? Under what conditions is it recommended versus when is it
not recommended to provide an undo option?

7.17 Supporting Local Undo or Rollback | 391

Supporting local undo is a kind of API proxy pattern. Check out
Recipe 5.17 for a more general approach to the proxy pattern.

Solution
As a general practice, all services are better off when they offer some level of undo
functionality. The ability to reverse the last action is assumed for most all human-
centric interfaces and doing the same for machine-centric interfaces is just as valid.

When services provide their own undo option, you should definitely expose that
through the external action interface (see Recipe 5.4). In these cases, supporting undo
is easy; just implement the service option in your API. However, there will be times
when an undo action is not available through the underlying service(s). In that case,
it is a good idea to implement undo at the API level whenever possible. That means
working up a “faux undo” that works with the underlying service (or services).

Direct undo
For simple CRUD-style services, implementing an undo is pretty straightforward.
You need to implement the service action (e.g., updateCustomer), keep a history of
undoable actions in a local durable storage index by an identifier (contextId), and
expose your own external action (for example, undoUpdateCustomer that takes the
contextId).

When implementing your local undo functionality, it is wise to establish a time frame
for valid rollbacks. For example, you might offer to reverse the action as long as the
rollback request comes within five seconds of the original action. This reduces the
likelihood that undoing something from last week will have adverse affects in other
parts of the system.

When you are dealing with simple CRUD-style services, you can consider the “direct
undo” approach. When supporting changes to multiple underlying services, or in
cases where you are not sure of the implications of implementing a direct reversal of
an action, you can try the “undo with delays” approach instead.

Supporting undo with delays
A less worrisome way to support undo is to simply delay the requested change. For
example, you can support the updateCustomer action and, when it is executed, you
put the request “on hold” for some set time (e.g., five seconds). If, in that time frame,
the API caller discovers its mistake and sends the undoUpdateCustomer message, you
can simply ignore the original request. In this case, the underlying service(s) never

392 | Chapter 7: Hypermedia Workflow

sees the original updateCustomer action and there is no possibility that undoing a
committed transaction will invalidate some other part of the system.

The downside of this approach is that you are committing to a built-in delay of some
value for all write operations that support undo. For this reason, it is a good idea to
only use this delay approach for actions that can support delayed completion without
breaking any performance commitments. For example, use cases such as nightly
batch updates, patterns that typically work via queues, etc., make good candidates for
the delayed undo.

Example
There are two possible implementation patterns for supporting undo for your service
interfaces: direct and delayed.

Direct undo
For the direct approach, consider a simple CRUD-style service that has this as its
internal function model:

// internal service code
function internal_actions(action, id, object) {
 var rt = null;
 switch(action) {
 case "create":
 rt = create(id, object);
 break;
 case "read":
 rt = read(id);
 break;
 case "update":
 rt = update(id, object);
 break;
 case "delete":
 rt = remove(id);
 break;
 }
}

One way to support undo for your API is to add a new action that looks like this:

// external actions in api code
function createAction(id, object, context) {
 var rt = null;
 if(writeLogAction(id, object, context)) {
 rt = internal_actions("create", id, object);
 }
 return rt;
}

function undoCreateAction(id, context) {

7.17 Supporting Local Undo or Rollback | 393

 var rt = null;
 rt = readLogAction(id, context);
 if(isUndoable(rt)) {
 rt = internal_actions("remove", id);
 }
 else {
 rt = errNotUndoable(id, context);
 }
 return rt;
}

Undo via delayed execution
Implementing rollback via a delayed execution looks slightly different. You can
implement this option by queuing up the unsafe operation (create, update, or delete)
with a delay. Then if needed, you can cancel the change before it is actually committed
to the backend service.

In the next example, there is an underlying operation that commits changes to three
sources: customers, orders, and products. Here’s a simplified version of how that
might work in code:

// external action
function scheduleUpdate(inputProperties) {
 // sort out properties to three sources:
 var customers = {...};
 var orders = {...}
 var products = {...}
 context = setTimeout(
 function(){updateSources(customers, orders, products);}, 5000
);
 return context;
}

// external action
function cancelUpdate(context) {
 clearTimeout(context);
}

// internal function
function updateSources(customers, orders, products) {
 var rt = null;
 // commit all three sources in parallel
 rt = updateWith(customers, orders, products);
 return rt;
}

The HTTP exchange to support this use case might look like this (in HTML):

**** REQUEST ****
PUT /update HTTP/1.1
Host: api.example.org

394 | Chapter 7: Hypermedia Workflow

Content-Type: x-www.form-urlencoded
Accept: text/html
...

customerId=q1w2e3&orderId=p0o9i8&productId=5t6y7u&...

**** RESPONSE ****
HTTP/1.1 202 Accepted
Content-Type text/html
...

<p>Order Updated. You can cancel this order in the next five seconds.</p>
<form name="rollback" method="put" action="http://api.example.org/update/r4t5">
 <input type="hidden" name="contextId" value="r4t5" />
 <input type="submit" value="Undo Order Update" />
</form>

Notice that the HTTP exchange uses HTTP 202 Accepted as the response. This is not
a requirement for supporting rollbacks via delayed execution but can be helpful for
API client applications since it makes the delay explicit in the exchange. You can also
just return 200 OK or 201 Created and still support the undo pattern.

Discussion
In the case of the direct undo pattern, make sure your current running context (e.g.,
the logged-in user context) has rights to complete all the underlying actions needed
for the undo. For example, if the logged-in user doesn’t have access rights to HTTP
DELETE, that logged-in user should not have access rights to the undo functionality.

Even when the underlying service(s) code supports simple CRUD actions, if your API
code relies on unsafe actions (add, edit, or delete) against more than one underlying
service (e.g., updateCustomer and updateSalesLog), you should consider using the
delay method for supporting local undo.

This recipe is designed to support rollback within your own service
interface. See Recipe 7.17 for details on how to handle rollbacks
across multiple services.

It might seem that implementing your own undo functionality will cause problems
for underlying services. This is not true as long as your API code sticks to implement‐
ing the exposed functionality of the service. In other words, if the service supports a
remove operation, it should not matter if the remove is used on a record three weeks
old created by someone else, as opposed to using the remove operation on a record
your own API consumer created five seconds ago.

7.17 Supporting Local Undo or Rollback | 395

One of the downsides of using the delay approach is that you are adding wait states to
your service interface. A couple of seconds may not seem like a big deal, but it can
add up quickly. Consider the possibility that you add a wait of three seconds to your
API, and there are three underlying services called by that API. Now assume that
each of those three underlying services has three-second wait states, too. And so
forth. Before you know it, we could be looking at 15 to 30 seconds of fixed delays in
our workflow! That’s fine if we’re looking at overnight batch updates, but it would be
a real mess if these APIs are used to provide instant updates to our stock trading
platform.

See Also
• Recipe 3.6, “Designing Consistent Data Writes with Idempotent Actions”
• Recipe 3.9, “Designing for Reversible Actions”
• Recipe 4.3, “Coding Resilient Clients with Message-Centric Implementations”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 5.17, “Using Semantic Proxies to Access Noncompliant Services”
• Recipe 7.16, “Short-Term Fixes with Automatic Retries”
• Recipe 7.18, “Calling for Help”

7.18 Calling for Help
There are times when a workflow problem cannot be easily resolved by a machine at
runtime. When that happens, it is a good idea to simply call for help by sending an
alert to a person who can sort out the problem and then, if possible, restart the work‐
flow or cancel it completely.

Problem
What do you do when a workflow error has occurred and there is no easy way to
resolve it? What is the bare minimum information needed to send a call for help?

Solution
There will be times when your carefully crafted workflow request will fail badly.
Sometimes you can fix the problem using an automatic retry (see Recipe 7.16), but
that may not work. When that happens, it is best to simply call for help from a
responsible person and let them sort it out.

396 | Chapter 7: Hypermedia Workflow

For example, some network error may be causing requests to fail and there is nothing
that can be done to fix that at the moment. When that happens, your workflow pro‐
cessor should send an alert (often an email along with an SMS message) to some pre‐
determined person responsible for handling these kinds of problems.

The alert should include (or point to) the following:

• The workflow description (Recipes 7.3, 7.4, and 7.5)
• The workflow progress resource (Recipe 7.7)
• The workflow shared state (Recipe 7.1)
• Any other pertinent information, such as error reports, traces, etc.

This can be either shipped as a ZIP file collection attached to an email or as pointers
(URLs) to the relevant documents (assuming the person has the access rights to all
the resources).

The person in charge of the incident can then try to sort out the problem and, if it
can be fixed, continue or restart the workflow request. If neither of those work, the
person can cancel the job completely.

This should be written up as an incident and placed in a collection that is reviewed
regularly. This incident collection can become the start of a bug fix or redesign to
help reduce calls for help in the future.

Example
The first step in supporting this recipe is including a responsible party on the work‐
flow job description. For document-driven workflow (Recipe 7.5), that would look
like this (see the contact section of the HTML version of the workflow document):

<html>
 <head>
 <title>Shopping Checkout Workflow</title>
 </head>
 <body>
 <h1>Shopping Checkout Workflow</h1>
 <div class="job">
 q1w2e3r4t5
 working
 ...
 <div class="contact">
 Mook Maundy
 mook@example.org
 1234567890
 9086574321
 </div>
 <div class="tasks">
 <div class="task">

7.18 Calling for Help | 397

 p0o9i8u7y6
 completed
 ...
 </div>
 ...
 </div>
 </div>
 </body>
</html>

Note that the contact block contains name, email, voice, and sms properties. These
values might not all be supplied, but at least email, voice, or sms should appear as
part of the contact block. These values may also be group values (e.g., support@exam
ple.org) or a general help line (e.g., 1-800-PLS-HELP).

If a halting error occurs (one that cannot be automatically resolved), an alert should
be automatically sent using email and/or sms with the related data or a URL pointing
to that data. For example, this error might automatically generate the following inci‐
dent message sent as an attachment to the email address:

{"collection": {
 "title": "CFH Incident Report q1w2e3r4",
 "links": [
 {"rel": "job", "href":"..."},
 {"rel": "progress", "href": "..."},
 {"rel": "sharedState", "href": "..."},
 {"rel": "errorReport", "href": "...}
]
}}

This example is a machine-readable version. The same data can be sent in a human-
friendly format, as well.

Discussion
Implementing this recipe is an important part of a healthy workflow design. You can
never be sure what might happen at runtime, and the ability to simply alert a human
to sort out the problem is essential.

While not mentioned here, it may also help to set some type of pri‐
ority codes for your workflow alerts. This goes beyond simple
workflow design and is best handled by an existing incident man‐
agement platform.

Generating a call for help incident is rather simple when you are using workflow
documents (Recipe 7.5), but it is a bit more involved if you are using DSL or code to
describe workflow. In the case of DSL workflow (Recipe 7.4), you probably need to
generate a resource that holds a nonexecutable version of the workflow script. For

398 | Chapter 7: Hypermedia Workflow

cases where the workflow is expressed as source code (Recipe 7.3), you will likely be
unable to share that code and may need to generate some tracing or other internal
information to share in the report.

Be sure that your call for help records do not publicly share any pri‐
vate data, proprietary information, or other security-related data
that could be exploited.

You can use the output from the call for help system to publish on a dashboard to
indicate the general health of your overall system. This can help you track the most
common call for help incidents and target them for bug fixes or updates. It can also
give you a sense of the ebb and flow of incidents (do they happen at common times of
the workday? etc.). Finally, you can track the time it takes to resolve incidents as a
measure of your response quality and adjust your teams, if needed.

Depending on your current environment, you may be able to use your existing bug or
incident reporting system to automatically generate a high-priority ticket that kicks
off its own alerting and routing workflow. This is not required but would likely be
easier to support than setting your own internal email/sms/voice alerting process for
alerts.

If you are generating your own alerts, you probably need to set up a list resource
(Recipe 7.11) and maybe even a work-in-progress (Recipe 7.10) interface to track and
manage your incidents. At this point, you are dangerously close to implementing
your own workflow support platform and probably need to check into some off-the-
shelf solutions for your call for help program.

See Also
• Recipe 3.3, “Sharing Domain Specifics via Published Vocabularies”
• Recipe 4.11, “Validating Data Properties at Runtime”
• Recipe 5.16, “Providing Runtime Fallbacks for Dependent Services”
• Recipe 6.5, “Returning Metadata for Query Responses”
• Recipe 7.7, “Exposing a Progress Resource for Your Workflows”
• Recipe 7.17, “Supporting Local Undo or Rollback”

7.18 Calling for Help | 399

7.19 Scaling Workflow with Queues and Clusters
One of the challenges of supporting workflow on the web is the possibility of high-
traffic loads (either sporadic or constant). This recipe covers some internal program‐
ming you can do to help better handle times when request volume might cause a
backup in processing.

Problem
How can you make sure that heavy traffic doesn’t cause workflow services to crash or
operate unreliably? What can be done behind the scenes to make it easier to handle
large traffic volumes and/or flaky workflow processing without causing the service
interface consumers to change their own behaviors?

Solution
If you are concerned that your workflow services might get overrun with high-
volume traffic or jobs that run too long, you can use two programming or architec‐
ture techniques behind the interface to improve reliability and scalability: queues and
clusters.

This recipe, like Recipe 7.16, deals with internal server-side pro‐
gramming details; all the elements here should be treated accord‐
ingly. This is not information that should be easily reachable on the
web.

Use queues to scale request traffic
By adding a message queue between the service interface and the service itself, you
can reduce the time it takes for a request to get acknowledged even if it will take some
time before the request is processed (Figure 7-13).

This technique is especially easy if you are expressing workflow requests as docu‐
ments (Recipe 7.5). By adding a queue between the interface and the service, you can
quickly return an HTTP 202 Accepted when the request arrives and then log the
request into a persistent queue. The service can then read messages off the queue and
process them as they are available.

400 | Chapter 7: Hypermedia Workflow

Figure 7-13. Message queues help you scale up request volume

If your messages are timing out in the queue (reaching jobMaxTTL or taskMaxTTL)
before they are successfully processed, you may need to add more workflow process‐
ors to read the queues.

Use clusters to handle request processing
If your workflow processing is timing out, you likely need to add more processors—
more workflow engines—to handle the added work. The easiest way to do this is to
create a machine cluster (see Figure 7-14). Most platforms (including all the cloud
platforms) have a feature that allows you to declare a single IP address as the destina‐
tion for a service interface and then place several machines behind that destination.
Any machine running in the cluster can accept workflow requests. That includes
reading off the backlog queue.

7.19 Scaling Workflow with Queues and Clusters | 401

Figure 7-14. Clusters help you scale up processing volume

The details of setting up and managing machine clusters is beyond
the scope of this book. Kubernetes is a great example of a product
that handles cluster management. All the major cloud platforms
(AWS, Google, Heroku, Microsoft, etc.) offer support for cluster‐
ing, too.

Using machine clusters can also protect you against intermittent machine failures. If
one machine in the cluster goes down, you may still have one or more machines up
and running that can take the request load while the problem machine gets rebooted
or replaced.

The good news is that both queues and clusters can be introduced without disrupting
the public service interface.

Discussion
There are lots of solutions for implementing queues behind your interface. The sim‐
plest one is to create a disk folder somewhere (e.g., /requests/) and write all requests
as a file in that folder. Then write code that monitors the folder and reads any files
that appear there. The drawback of this option is that the folder is often tied to a spe‐
cific machine, making it harder to implement shared queues for machine clusters.

402 | Chapter 7: Hypermedia Workflow

All the major cloud vendors offer an auto-scaling feature. You can set parameters that
control how large the traffic volume grows, automatically spin up new machines to
handle the added requests, and then close out machines as the volume decreases. This
can sometimes be fiddly to set up and possibly costly to operate, but it can get you
through a short-term jam.

In both cases (queues and clusters), it is important that the messages are fully self-
describing, the share states exist as independent resources, and the services can oper‐
ate in parallel. These are all features of workflow-compliant services covered in
Recipe 7.1.

See Also
• Recipe 3.7, “Enabling Interoperability with Inter-Service State Transfers”
• Recipe 4.11, “Validating Data Properties at Runtime”
• Recipe 6.1, “Hiding Your Data Storage Internals”
• Recipe 6.9, “Improving Performance with Caching Directives”
• Recipe 7.7, “Exposing a Progress Resource for Your Workflows”
• Recipe 7.15, “Synchronous Reply for Incomplete Work with 202 Accepted”

7.20 Using Workflow Proxies to Enlist
Noncompliant Services
There are times when you want to use an existing noncompliant service interface as
part of your workflow process. This recipe shows you how to do that safely and when
to not do it at all.

Problem
What do you do when you have an existing service interface that is not a workflow-
compliant implementation and you want to include that as a task in a workflow job?
Under what cases can this be done safely, and when it is not advisable to try at all?

Solution
The simplest way to enlist a service interface that is not workflow-compliant into
your workflow stream is to wrap it in a workflow-compliant proxy. This proxy can
supply all the aspects of a workflow-compliant service (see Recipe 7.1), including all
the actions, support for shared state, and passing correlation and request identifiers.

7.20 Using Workflow Proxies to Enlist Noncompliant Services | 403

Your workflow proxy needs to support all the important actions listed in Recipe 7.1,
including:

• Execute
• Repeat
• Revert

Typically, you can use the Execute action to point to the target service and perform
the desired work. You will likely need to code routines that read and write content in
the associated shared state resource, too.

However, support for the Repeat idempotent action and the Revert undo action can
be more difficult. For read-only services like validating a postal code against a list, or
compute-only services like calculating sales tax, there is no meaningful Revert to sup‐
port and you can easily Repeat the actions as many times as you wish.

Note that if the target service changes state on the server side (e.g., modifies stored
data, modifies a resource, etc.), you’ll need to make sure to support both Repeat and
Revert. If the existing service interface does this already, you can just wire up the
proxy actions to the target service. If not, you’ll need to see if you can code the proxy
in a way that gives you the support you need.

For example, you might be able to support the Revert action for creating a resource
by coding into the proxy the local knowledge of the resources the proxy has created,
and upon request, executing the Revert action to delete that resource. However, you
need to ensure that the resource you are attempting to delete has not created some
other dependent state change (modified existing resources like a work ticket, log
entry, etc.). This can be close to impossible if you or your team do not “own” the tar‐
get service interface.

Here Be Dragons!
For reasons stated here, you should only proxy services that are read-only. The excep‐
tion to this rule would be cases where you are in control of the noncompliant service
and are confident you can safely support Revert and Repeat actions on that service.

In general, you should steer clear of relying on workflow proxies if at all possible.
When you can’t avoid it, try to stick to proxying read-only services unless you are
absolutely sure the unsafe actions can be properly repeated and reverted.

404 | Chapter 7: Hypermedia Workflow

Example
Assume you have a noncompliant service called computeVAT that you want to enlist in
your shopping workflow. To do this, you need to create a new workflow-compliant
proxy interface (let’s call it workflowVAT) that supports following:

readSharedState

This loads shared state into local memory, ready to use to supply any required
data for execution service actions.

inputVATData

This exposes a form for calling the execution operation and, if possible, is filled
in by properties in the sharedState collection.

executeVATComputation

This calls the target service’s key functionality (e.g., computeVAT) using the previ‐
ous form, filled in with data from the sharedState collection.

writeSharedState

This writes the results of the execution to the sharedState collection.

repeatVATComputation

This repeats the process of taking data from the sharedState collection, filling in
the inputVATData form, and running the executeVATComputation action. This
also results in a call to the writeSharedState action to update the sharedState
collection.

RevertVATComputation

This action removes any results (from the executeVATComputation action) from
the sharedState collection (essentially reverting it back to its state before any
execution took place) and performs a writeSharedState to commit the Revert
action to the collection.

All through this process, the HTTP interface for the proxy actions supports both the
correlation-id (job identifier) and request-id (task identifier) properties that are
passed back and forth for any of the HTTP request or response messages.

You may notice that the proxy is doing quite a bit of heavy lifting to make it possible
to use the computeVAT service. So much heavy lifting, that it might make sense to sim‐
ply replace the computeVAT service with one that is workflow compliant. And you
would be correct.

In other words, only use the workflow proxy recipe when you are unable to replace
the noncompliant service with one that is workflow compliant.

7.20 Using Workflow Proxies to Enlist Noncompliant Services | 405

Discussion
Introducing workflow proxies can reduce the reliability of your system. You are
adding another service in the chain, and that exposes the possibility of network dis‐
connects as well as service failures at either the proxy or target location. Be sure to
include fixes for these things in your implementation (see Recipe 5.16).

It can be especially dangerous to attempt to proxy an unsafe noncompliant service
(one that writes data) if you do not control the target service. For example, you don’t
know just what is happening behind the interface you are shown. Are there other
services running? Is there a chain of dependent writes going on that you do not see?
Even if you are confident of the current actions of the target service, what happens
when that target is updated or replaced by its owner?

If you own the noncompliant service, you might need to use the workflow proxy pat‐
tern as an interim solution, one that will help you build up your workflow service
practice while you spend time replacing noncompliant services with ones that meet
all the requirements laid out in Recipe 7.1. This is a common digital transformation
pattern that I see many organizations go through. A kind of “fake it until you make it”
approach. See “Transforming Existing Services” on page 410 for more on this point.

See Also
• Recipe 3.4, “Describing Problem Spaces with Semantic Profiles”
• Recipe 3.6, “Designing Consistent Data Writes with Idempotent Actions”
• Recipe 4.4, “Coding Effective Clients to Understand Vocabulary Profiles”
• Recipe 5.13, “Improving Service Discoverability with a Runtime Service Registry”
• Recipe 5.17, “Using Semantic Proxies to Access Noncompliant Services”
• Recipe 6.13, “Using Pass-Through Proxies for Data Exchange”
• Recipe 7.1, “Designing Workflow-Compliant Services”
• Recipe 7.15, “Synchronous Reply for Incomplete Work with 202 Accepted”
• Recipe 7.17, “Supporting Local Undo or Rollback”

406 | Chapter 7: Hypermedia Workflow

CHAPTER 8

Closing Remarks

Every day is a journey, and the journey itself is home.
—Matsuo Basho

Now we come to the final stop on this journey—the closing. We’ve covered quite a bit
of ground in this book and it’s worth taking a few moments for some final review and
reflection.

We started this journey with an introduction (Chapter 1) to the basic ideas behind
this book, including exploring the meaning of RESTful web APIs and how hyperme‐
dia fits into the picture. We also identified some “Shared Principles for Scalable Serv‐
ices on the Web” on page 16 to help guide us in selecting and defining the recipes for
this book.

I also included some background (Chapter 2) on some of the key technologies and
design concepts that drive the web and provide inspiration for the recipes listed here.
Hopefully, this historical detour provided some valuable context for the kinds of
design and implementations that animate the recipes here.

Of course, the bulk of the book is in Part II, where all the recipes are found.

Finally, I’ve included some pointers to additional material outside the pages of this
book that might be helpful as well as a few parting thoughts as you take the content of
this book to the next step.

Applying These Recipes
The recipes in this book cover a wide field, including design (Chapter 3), clients
(Chapter 4), services (Chapter 5), data (Chapter 6), and workflow (Chapter 7). While
they are all laid out in a similar way, some recipes are definitely more challenging
than others. Even though there is a meaning to the order in which I present the

407

chapters, that order might not be the way you and your team need to tackle the work
of applying these recipes to the service interfaces you publish and/or consume within
your organization.

Also, some of these recipes are mostly advice (e.g., Recipe 3.8) and some are detailed
implementation guides (e.g., Recipe 7.6). Some rely heavily on cooperation between
both API consumers and producers (e.g., Recipe 7.13). And some can be imple‐
mented without the need for any direct client-server interactions at design or build
time (e.g., Recipe 5.2). Sorting out which recipes can be applied independently and
which require close cooperation between parties will help you determine which rec‐
ipes offer the biggest returns on your initial investment of time and resources.

It is worth pointing out that one of the advantages of using these recipes is they give
us common names to use for shared things. The recipes are a language that we can
use to talk about our designs. In my experience, even before I introduce these recipes
to a client, I see examples of them in some of their service interfaces. Usually, while
the teams know about a common way to handle paging through lists, for example,
they haven’t really shared that as a reuseable recipe and don’t have a common name
for it throughout the company. Sometimes just using the names of these recipes can
bring additional coherence to your API implementations.

Design First
In my experience, you can use the design recipes as a starting place for any cases
where you need to build new service interfaces from scratch. This will work whether
you are using APIs to access existing services or are creating both the interface and
the service code at the same time. The advantage here is that you get to use the design
recipes to set new expectations for both API producers and consumers without the
struggle of making new interface rules work for well-established, noncompliant exist‐
ing services.

But even when you are starting out fresh with your services, it is important to resist
the temptation to “make the whole world new again.” Take small steps to improve the
design of your APIs. For example, setting a standard that leads new APIs to be limited
to a fixed set of representation formats (see Recipe 3.1) is a good early step. Support‐
ing things like repeatability, reversibility, extensibility, and modifiability are more
challenging since they require both the producer and consumer to understand the
implications of the recipe at runtime.

Clients and Servers Unite!
The chapters covering client recipes (Chapter 4) and services (Chapter 5) were writ‐
ten as standalone chapters. However, the reader is likely to find some level of repeti‐
tion and interconnection between them. It is not much fun to write service interfaces
when there are no client applications to consume them. For this reason, even if your

408 | Chapter 8: Closing Remarks

current role in the team is to focus on just one of these two ends of the interaction, it
would be a good idea to read through both chapters to get the full picture.

One of the key messages in the client recipes is to assume a level of independence
from any particular service. Instead of designing and building “captive” clients that
are expected to work with just one service interface, I’ve tried to include recipes that
help you build client applications that can more easily traverse multiple services in
order to solve a single problem (see Recipes 4.15 and 4.16). Even if you still end up
creating service-specific client applications, keeping the spirit of independence in
your frontend apps can improve the stability and flexibility of your codebase.

Similarly, Chapter 5 contains lots of recipes that emphasize publishing meta-
information about the service interface itself. Client preferences (Recipe 5.5), service
definition files (Recipe 5.9), API metadata documents (Recipe 5.10), and vocabulary
listings (Recipe 5.7) are all examples of the importance of sharing metadata about the
service interface. Even the recipes on errors (Recipe 5.12), health (Recipe 5.11), and
content negotiation (Recipe 5.6) illustrate how additional information about the ser‐
vice requests themselves can be helpful in creating robust service interfaces.

Starting with Data Is Challenging
I know many organizations base much of their architecture on existing data models.
Sometimes these data models have been refined over decades of use and modifica‐
tion, and are an incredibly powerful way to capture key business rules and practices.
For these companies, applying the data recipes in Chapter 6 can present some chal‐
lenges. The approach to data in this book is one that assumes your services have their
own nonshared data storage and that service interaction is enabled through passing
properties at runtime (e.g., Recipe 7.2), instead of multiple services accessing the
same database tables. In these cases, the data recipes that can be the most valuable are
those that cover how to represent query requests (Recipe 6.4) and responses (Recipe
6.5), as well as the recipes that focus on hiding data models (Recipe 6.1) and caching
(Recipe 6.9) response results.

However, as I already mentioned, if you are designing and implementing new data
storage services, Chapter 6 has a wealth of recipes that can inform your choices of
storage technologies, search libraries, and integrity management.

Going with the Flow
Finally, the chapter on programming workflows (Chapter 7) brings many of the pre‐
vious recipes together to solve problems using multiple services in a collection. This
chapter takes a different approach than most of the books I’ve seen on the subject,
too. Instead of focusing on the notions of orchestration versus choreography, the rec‐
ipes here lean heavily on the hypermedia features already covered in previous

Applying These Recipes | 409

chapters in order to build a more declarative, shared, distributed way to enlist serv‐
ices into a workflow.

Because I’m sharing a different approach, implementing these recipes using typical
workflow platforms as tools can be a challenge. However, it has been my experience
that as you learn to “think in hypermedia” (see Chapter 2), these recipes can become
less opaque and easier to translate into working code.

It is worth pointing out that the workflow recipes are grouped together to make them
a bit easier to digest. From Recipes 7.1 through 7.5, you’ll find a general discussion of
the foundation of a robust workflow system. The collection from Recipes 7.8 to 7.13
provides a set of straightforward recipes for solving common interactions like list
navigation, form submission, work-in-progress interactions, and more. There are a
few other recipes focused on particular challenges in defining and managing work‐
flow solutions, but one of the most important is Recipe 7.6, which maps out the basics
of an extensible foundation for a general “RESTful job control” language to handle
just about any workflow challenge.

Like the other chapters, it is best to start small and stay simple for as long as you pos‐
sibly can when implementing these workflow recipes. Feel free to skip over the ones
that seem too complicated, and don’t hesitate to modify the ones outlined here or
even create ones of your own that better fit your organization’s needs.

Transforming Existing Services
Whenever you do a transition, do the smallest thing that teaches you the most and do that
over and over again.

—Adrian Cockcroft,
former Netflix Cloud CTO

This collection of recipes, along with the initial guidance in Chapters 1 and 2, provide
a solid basis for transforming existing services to be more in line with the kind of
hypermedia approach advocated here. But just modifying existing service interfaces
without any clear plan or payback can be not only frustrating, but also dangerous.

Like any transformation work, it only pays off if there are clear advantages to chang‐
ing an already existing system. The best strategy is to make a number of independent,
small changes over time instead of trying to package up a lot of important modifica‐
tions in a single production release.

You can use the recipes in this book to identify a single problem (e.g., “How can we
improve the performance of our data queries?”), and then work through one or more
changes to your services and/or interface APIs that will result in measurable improve‐
ments. Focusing on making changes that result in measurable improvements has a
kind of “flywheel” effect in the company. As each change brings better performance, a
more stable runtime experience, and less resource-intensive updates, this adds

410 | Chapter 8: Closing Remarks

momentum to your work and makes it easier to get support throughout the organiza‐
tion for other improvement initiatives in the future. Good work leads to more good
work.

This book includes a handful of recipes designed to help ease transformation work,
too. These are labeled as “pass-through” recipes (Recipe 5.17, Recipe 6.13, and Recipe
7.20) and are designed to make it possible (in some cases) to wrap existing services in
a thin proxy interface that more closely follows the other recipes in this book. This
can make it possible to “modernize” some existing services, provide additional cus‐
tomization for external services you don’t control, and help you bring some consis‐
tency to your API ecosystem; all without having to recode or replace existing services
that are still cost-effective and functional. As mentioned in these pass-through rec‐
ipes, there are downsides to using these proxy recipes, and you need to use caution
when implementing them.

As your company applies more and more of these recipes to your existing and new
APIs, you may also notice changes in nontechnical areas, including team dynamics
and individual empowerment. Because the selected recipes were designed to support
a common set of shared principles (see “Shared Principles for Scalable Services on the
Web” on page 16), they can also have the effect of freeing teams from the limits of
waterfall practices as well as unlocking creativity within your organization. By creat‐
ing and publishing services that make it easier for teams to work at their own pace
and safely explore creative solutions without worrying about breaking other parts of
the ecosystem, your company can begin to reflect some of the same virtues embodied
in the recipes in this book.

If you engage in a concerted effort to transform technical elements of your IT depart‐
ments, be prepared to experience transformations in company culture, too.

Additional Resources
This book is a big project and, frankly, not everything that was planned for has ended
up between these pages. Time, resources, and priorities can work against an author
sometimes, and cuts need to be made. Also, there are related projects like samples,
online documentation for recipes, videos, and other elements, that live outside of
these pages. So I wanted to share a few pointers to additional related materials you
can use to enrich your RESTul Web API Patterns and Practices Cookbook experience.

Here are some other resources you can look forward to now that the book is released:

WebAPICookbook.com
This is the landing page for this book and all related materials. If you’re looking
for additional resources, pointers to new materials, or just want to check on the
status of the cookbook project, check out the website first.

Additional Resources | 411

@WebAPICookbook
This is the Twitter account associated with this book. Be sure to follow this
account for any announcements about content updates, other resources, presen‐
tations, etc.

Videos
I’ll be releasing a set of videos that cover some of the same material in this book
along with interviews with API designers, architects, and programmers. The ini‐
tial home for these videos will be on my YouTube channel. You can also monitor
the Twitter account for video releases.

More recipes
I’ll be posting additional recipes (ones that didn’t make the cut in the book)
online as time goes on. Check out the Twitter account for details. You can also
visit the GitHub repo for this book.

ALPS catalog
There is an extensive online catalog of the Application-Level Profile Semantics
(ALPS) documents for many recipes in this book. You’ll find additional ALPS
documents there for related recipes and sample implementations of the recipes,
too.

Additional content
Over time there may be other material available, including presentations, pod‐
casts, etc. that crop up. I’ll do my best to maintain an up-to-date reference list of
these resources, too.

Finally, if you post anything online or see references to the recipe collection any‐
where, please ping me via the Twitter account and I’ll be sure to add the pointer to
my collection.

Next Steps
So, now that you’ve made it to the end of this part of the journey, what’s next? Hope‐
fully, you have some ideas on how to “think in hypermedia” and how to apply these
recipes to your own API efforts. You may even have additional recipes in mind that
can solve important problems for your community. Now is a great time to start apply‐
ing the ideas here to your own work. This is the best way to figure out which of these
recipes will work for you, and which recipes are missing and need to be designed and
documented.

Keeping in mind the guiding principle of this book is another way to think about
your next steps. How can you and your team “leverage the global reach of the web to
solve problems you haven’t thought of for people you haven’t met”? Even if you are
not using these recipes directly, following the principle of helping people you haven’t

412 | Chapter 8: Closing Remarks

http://twitter.com/webapicookbook
http://youtube.com/mamund
http://github.com/webapicookbook
http://webapicookbook.github.io/alps-documents

met solve new problems is an excellent way to reach out to your professional and per‐
sonal communities and make things just a little bit better.

I hope this book has inspired you to think creatively about how hypermedia and the
internet can be used to solve problems in a new and imaginative way. No one knows
what the future holds but, to quote Alan Kay (one more time):

The best way to predict the future is to invent it.

Best of luck in your future, however you make it.

Next Steps | 413

APPENDIX A

Guiding Principles of RESTful Web APIs

The guiding principle driving this recipe collection is:
Leverage global reach to solve problems you haven’t thought of for people you have
never met.

The supporting principles are illustrated in Figure A-1 and described further in the
following list.

Figure A-1. RESTful web API principles

415

Discovery
Good recipes increase our global reach—the ability to share our solutions and to
find and use the solutions of others.

Extension
Good recipes make well-designed services available for others to use in ways we
haven’t thought of yet.

Composition
Good recipes make it possible for “strangers” (services and/or people) to safely
and successfully interact with each other to solve a problem.

Evolution
Good recipes promote longevity and independent evolution on a scale of
decades.

Longevity
Good recipes recognize that nothing is permanent and things will always change
over time.

416 | Appendix A: Guiding Principles of RESTful Web APIs

APPENDIX B

Additional Reading

Here is a list of reading materials that I keep handy on my (virtual) bookshelf. Most of
the ones listed here were mentioned somewhere in the book:

• Alexander, Christopher. A Pattern Language. New York: Oxford University Press,
1977.

• Alexander, Christopher. The Timeless Way of Building. New York: Oxford Univer‐
sity Press, 1979.

• Amundsen, Mike. Building Hypermedia Clients with HTML5 and Node. Sebasta‐
pol, CA: O’Reilly Media, Inc., 2011.

• Amundsen, Mike. Design and Build Great Web APIs. Raleigh, NC: Pragmatic
Bookshelf, 2020.

• Amundsen, Mike. RESTful Web Clients. Sebastapol, CA: O’Reilly Media, Inc.,
2017.

• Amundsen, Mike. What Is Serverless? Sebastapol, CA: O’Reilly Media, Inc., 2020.
• Amundsen, Mike, and Derric Gillig. API Strategy for Decision-Makers. Sebasta‐

pol, CA: O’Reilly Media, Inc., 2022.
• Bardini, Thierry. Bootstrapping. Stanford, CA: Stanford University Press, 2000.
• Bass, Len, et al. Software Architecture in Practice, 4th Edition. Boston: Addison-

Wesley, 2021.
• Berners-Lee, Tim, and Mark Fishetti. Weaving the Web. New York: Harper-

Collins, 2008.
• Evans, Eric. Domain-Driven Design. Sebastapol, CA: O’Reilly Media, Inc., 2003.
• Gibson, James J. The Ecological Approach to Visual Perception. New York: Psy‐

chology Press, 1979.

417

https://www.google.com/books/edition/A_Pattern_Language/FTpxDwAAQBAJ?hl=en
https://www.google.com/books/edition/The_Timeless_Way_of_Building/H6CE9hlbO8sC?hl=en
https://learning.oreilly.com/library/view/building-hypermedia-apis/9781449309497
https://learning.oreilly.com/library/view/design-and-build/9781680508123
https://learning.oreilly.com/library/view/restful-web-clients/9781491921890
https://learning.oreilly.com/library/view/what-is-serverless/9781492074915
https://learning.oreilly.com/library/view/api-strategy-for/9781492096795
https://www.google.com/books/edition/Bootstrapping/CEc1OOGmA5IC?hl=en
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979
https://www.google.com/books/edition/Weaving_the_Web/Unp4PwAACAAJ?hl=en
https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215
https://www.google.com/books/edition/The_Ecological_Approach_To_Visual_Percep/4qhXmSEOTRQC?hl=en

• Gibson, James J. The Senses Considered as Perceptual Systems. Boston: Houghton
Mifflin, 1966.

• Hall, Wendy, et al. Rethinking Hypermedia. New York: Springer US, 1996.
• Higginbotham, James. Principles of Web API Design. Boston: Addison-Wesley,

2021.
• Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns. Boston:

Addison-Wesley, 2003.
• Lauret, Arnaud. The Design of Web APIs. Shelter Island, NY: Manning Publica‐

tions, 2019.
• Meadows, Donella. Thinking in Systems. White River Junction, VT: Chelsea

Green Publishing, 2008.
• Medjaoui, Mehdi, et al. Continuous API Management, 1st ed. Sebastapol, CA:

O’Reilly Media, Inc., 2018.
• Medjaoui, Mehdi, et al. Continuous API Management, 2nd ed. Sebastapol, CA:

O’Reilly Media, Inc., 2021.
• Nadareishvili, Irakli, et al. Microservice Architecture. Sebastapol, CA: O’Reilly

Media, Inc., 2016.
• Nadareishvili, Irakli, and Ronnie Mitra. Microservices: Up and Running. Sebasta‐

pol, CA: O’Reilly Media, Inc., 2020.
• Nelson, Ted. Computer Lib / Dream Machines. Tempus Books, 1974.
• Newman, Sam. Building Microservices. Sebastapol, CA: O’Reilly Media, Inc., 2021.
• Norman, Donald. The Design of Everyday Things. New York, NY: Basic Books,

2013
• Richardson, Chris. Microservices Patterns. Shelter Island: Manning Publications,

2018.
• Richardson, Leonard, et al. RESTful Web APIs. Sebastapol, CA: O’Reilly Media,

Inc., 2013.
• Rosenfeld, Louis, et al. Information Architecture, 4th edition. Sebastapol, CA:

O’Reilly Media, Inc., 2015.
• Russell, Stuart, and Peter Norvig. Artificial Intelligence. Engelwood Cliffs, NJ:

Prentice-Hall, Inc., 1995.
• Shiflett, Chris. HTTP Developer’s Handbook. Indianapolis, IN: Sams Publishing,

2003.
• Taylor, Richard N., et al. Software Architecture. Hoboken, NJ: John Wiley & Sons,

2008.
• Wolff, Eberhard. Microservices. Boston: Addison-Wesley, 2016.

418 | Appendix B: Additional Reading

https://www.google.com/books/edition/The_Senses_Considered_as_Perceptual_Syst/q9ROAAAAMAAJ?hl=en
https://www.google.com/books/edition/Rethinking_Hypermedia/ISPSBwAAQBAJ
https://learning.oreilly.com/library/view/principles-of-web/9780137355754/
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683
https://learning.oreilly.com/library/view/the-design-of/9781617295102
https://www.chelseagreen.com/product/thinking-in-systems/
https://learning.oreilly.com/library/view/continuous-api-management/9781492043546
https://learning.oreilly.com/library/view/continuous-api-management/9781098103514
https://learning.oreilly.com/library/view/microservice-architecture/9781491956328/
https://www.oreilly.com/library/view/microservices-up-and/9781492075448
https://computerlibbook.com
https://www.oreilly.com/library/view/building-microservices-2nd/9781492034018
https://www.google.com/books/edition/The_Design_of_Everyday_Things/nVQPAAAAQBAJ?hl=en
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549
https://learning.oreilly.com/library/view/restful-web-apis/9781449359713
https://learning.oreilly.com/library/view/information-architecture-4th/9781491913529/
https://www.google.com/books/edition/Artificial_Intelligence/PQI7vgAACAAJ?hl=en
https://learning.oreilly.com/library/view/http-developers-handbook/0672324547
https://www.google.com/books/edition/Software_Architecture/npB5DwAAQBAJ?hl=en
https://learning.oreilly.com/library/view/microservices-flexible-software/9780134650449

• Wright, Alex. Cataloging the World. New York: Oxford University Press, 2014.
• Yourdon, Edward, and Larry E. Constantine. Structured Design. Englewood

Cliffs, NJ: Prentice-Hall, Inc., 1975.

Additional Reading | 419

https://www.google.com/books/edition/Cataloging_the_World/480sAwAAQBAJ?hl=en
https://www.google.com/books/edition/Structured_Design/zMQmAAAAMAAJ?hl=en

APPENDIX C

Related Standards

Throughout the book I referred to standards documents. Most of them are public
standards, but some are proprietary or private standards efforts. Here is a compre‐
hensive list of standards I mentioned in these pages.

Viable Registered Media Types for RESTful Web APIs
This section contains a list (as of the release of this book) of media types that should
be considered when you create your own RWAs. Most of them are already registered
with the Internet Assigned Numbers Authority (IANA). Some are still going through
the process of registration, and some new ones have been created.

By the time you read this book, some new media types may have
been added, and some listed here may have fallen out of favor. It’s a
good idea to keep a look out for changes in the media type registry
over time.

I’ve only listed formats I’ve had some experience with in the past. There are likely for‐
mats you know well that do not appear here or ones that appear here, you haven’t
seen before. Just focus on the ones that work best for you, and feel free to modify this
list to fit your own experience and needs. See Recipe 3.2 for details on structured and
unstructured types.

421

https://oreil.ly/EEAst

Structured Media Types
• HTML
• Collection+JSON
• UBER
• HAL
• SIREN
• HAL-FORMS
• Atom

Unstructured Media Types
• XML
• JSON
• CSV
• JSON-LD

Unregistered Media Types
• YAML
• JSON API

All hypermedia formats are not equal. For example, the Hypertext Application Lan‐
guage (HAL) format standardizes link elements but does not standardize forms or
data bodies. The Structured Interface for Representing Entities (SIREN) format
standardizes links and forms, but not data bodies. HTML, Collection+JSON, and
Uniform Basis for Exchanging Representations (UBER) standardize all three message
elements. I’ve created some “hypermedia polyfill” formats to supplement SIREN
(Profile Object Description) and HAL (HAL-FORMS) to help bridge the gaps, but
these additions can complicate implementations.

API Definition Formats
The following is a list of the common API definition formats (in alphabetical order)
in use as of this writing. You can use these formats to define the exact details of your
service’s API (URIs, request methods, response codes, bodies, metadata, etc.). Some
of these formats are designed to support classic HTTP request/response interactions,
and others are for asynchronous messaging. It is likely that you’ll use more than one
of these formats in the implementation of your service APIs:

422 | Appendix C: Related Standards

https://www.w3.org/TR/html52
http://amundsen.com/media-types/collection
http://uberhypermedia.com
https://en.wikipedia.org/wiki/Hypertext_Application_Language
https://github.com/kevinswiber/siren
https://rwcbook.github.io/hal-forms
https://datatracker.ietf.org/doc/html/rfc4287
https://www.w3.org/standards/xml
https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/rfc/rfc4180.html
https://json-ld.org/spec
https://yaml.org
https://jsonapi.org

• AsyncAPI
• OpenAPI
• Protobuf
• RAML
• Schema Definition Language (tutorial)
• WSDL
• WADL

The versions listed here might be outdated by the time you are
reading this book. Be sure to confirm the versions and release dates
of the formats you choose to support.

Semantic Profile Document Formats
As of this writing, there are two SPDs in common use, along with one “legacy” for‐
mat that I still see sometimes (XMDP):

• Dublin Core Application Profiles (DCAP)
• Application-Level Profile Semantics (ALPS)
• XHTML Meta Data Profiles (XMDP)

Hypermedia Supporting Types
These are formats designed to help fill in gaps in some hypermedia formats (POD
and HAL-FORMS) as well as express other hypermedia-related metadata at design or
build time (WESTL):

• Profiles for Object Description (POD)
• HAL-FORMS Media Type
• Web Service Transition Language (WESTL)

Related Standards | 423

https://oreil.ly/MFPnV
https://oreil.ly/udjzo
https://oreil.ly/g55LO
https://oreil.ly/nvdyy
https://oreil.ly/frT9a
https://oreil.ly/UkG7a
https://oreil.ly/HmqDW
https://oreil.ly/BRF93
http://alps.io/spec
http://gmpg.org/xmdp
http://rwcbook.github.io/pod-spec
http://rwcbook.github.io/hal-forms
http://rwcbook.github.io/wstl-spec

APPENDIX D

Using the HyperCLI

The hyper utility is a simple command-line style shell/REPL for interacting with
online services/APIs. While a fully functional HTTP client, hyper is especially good
at dealing with hypermedia services, including Collection+JSON, SIREN, and HAL.
There are plans to add support for PRAG+JSON, MASH+JSON, and possibly UBER
in the future. Other media type support can be added via plug-ins, too.

Along with HTTP and media type-aware commands, hyper also supports some con‐
venience functionality like shell commands, configuration file management, and a
LIFO stack to handle local memory variables.

You can access tutorials, examples, the source code, and the latest
release of the HyperCLI tool via the HyperCLI landing page.

Hello, Hyper!
Here’s a super simple HyperLANG script:

GOTO https://company-atk.herokuapp.com

And here’s how you do it:

1. Make sure you have installed the latest update of the HyperCLI:
$> npm install -g @mamund/hyper

2. Launch the HyperCLI REPL:
$> hyper

3. Type the following command and press Enter:

425

https://oreil.ly/LCAu2
https://oreil.ly/z3DCK
https://oreil.ly/SU7Jy
https://oreil.ly/1wB73
https://oreil.ly/MhYdr
https://oreil.ly/iNBAJ
https://oreil.ly/RKhJ8

> GOTO https://company-atk.herokuapp.com

It may take a few seconds for the sample service to fire up, but eventually you should
see the following response:

STATUS 200
https://company-atk.herokuapp.com
application/forms+json; charset=utf-8

You can also view the request/response details with these commands:

SHOW REQUEST
SHOW RESPONSE
SHOW METADATA
SHOW ALL
SHOW URL
SHOW STATUS
SHOW CONTENT-TYPE
SHOW HEADERS

Finally, you can place all the HyperLANG commands in a text file and then pipe that
file into the HyperCLI, like this:

$> hyper <hello-hyper.script

Congratulations! You’ve just created your first HyperLANG program.

Other Information
Some other details on the HyperCLI project:

Examples
See the /scripts/ folder in the GitHub repo for lots of working examples.

Plug-in support
You can author your own hyper plug-in and place it in the /plugins/ folder of the
project. It will be automatically loaded at runtime. See the “Plug-In Authoring”
section in the GitHub repo for details.

NPM package support
You can download and track the latest npm package updates for HyperCLI, too.

Source code
You’ll find the source code for this utility in the /src/ folder of the GitHub repo.

426 | Appendix D: Using the HyperCLI

https://oreil.ly/uRvov

HyperCLI Commands
Table D-1 lists the HyperCLI command keywords (as of the release of this book).

Be sure to check the latest documentation at the GitHub repo for
the most recent changes.

Table D-1. HyperCLI command keywords and descriptions
Comment lines
VERSION Returns version info

EXITǀSTOP Halt and exit with 0

EXIT-ERR Halt and exit with 1

EXIT-IF Halt and exit with 1 if simple condition is met

.. INVALID-URL <urlǀ#$> Returns TRUE if the string is NOT a valid URL

.. STACK-EMPTY Returns TRUE if there is nothing on the internal stack

CLEAR Clears the console

SHELL Simple shell (bash/dos) support

.. LSǀDIR [folder/path]

PLUGINS Returns list of loaded external plug-ins

CONFIG (READ) Returns NVP of saved config data

.. FILEǀLOAD [filename] Loads config file (defaults to “hyper.config”)

.. SAVEǀWRITE [filename] Loads config file (defaults to “hyper.config”)

.. SET <{ n:v,… }> Shared config file write

.. CLEAR Removes all settings

.. RESET Resets to default settings

.. REMOVE <string> Removes the named item

STACK JSON object LIFO stack

.. CLEARǀFLUSH Clears all the items from the stack

.. PEEK Displays the JSON object at the top of the stack

.. PUSH <{ n:v,… }> Adds a new JSON object to the stack

.. PUSH WITH-RESPONSE Adds a new item on the stack from the top of the response stack

.. PUSH WITH-PATH <path-stringǀ$#> Adds a new item on the stack that is the result of the JSONPATH

.. EXPAND-ARRAY Expands the array on the top of the stack into n-items on the stack

.. POP Removes the top item from the stack

.. LENǀLENGTH Returns depth of the stack

.. SET <{"n”:"v”,…}> Updates the JSON object on the top of the stack

.. LOADǀFILE [filename] Reads a single JSON object from disk onto the stack (defaults to hyper.stack)

Using the HyperCLI | 427

Comment lines
.. SAVEǀWRITE [filename] Writes the top item on the stack to disk (defaults to hyper.stack)

.. DUMP [filename] Writes the full stack to disk (defaults to hyper.dump)

.. FILL [filename] Replaces the current stack with contents in disk file (defaults to hyper.dump)

OAUTH OAuth 2.0 support

.. LOAD [filename] Loads OAuth config file (defaults to oauth.env)

.. SAVE [filename] Saves OAuth config file (defaults to oauth.env)

.. DEFINE <string> <{ n:v,… }> Creates an entry in the OAuth configuration

.. UPDATE <string> <{ n:v,… }> Modifies settings in an existing OAuth configuration

.. GENERATEǀGEN <string> Generates an access token using the configuration data

.. REMOVE <string> Removes the named item

ACTIVATEǀCALLǀGOTOǀGO Makes an HTTP request

.. WITH-URL <urlǀ$#> Uses URL to make the request

.. WITH-REL <stringǀ$#> Uses HREF value on the associated in-doc element

.. WITH-ID <stringǀ$#> Uses HREF value on the associated in-doc element

.. WITH-NAME <stringǀ$#> Uses HREF value on the associated in-doc element

.. WITH-PATH <json-path-stringǀ$#> Uses value from JSONPath result as the URL

.. WITH-ACCEPT <stringǀ$#> Sets the accept header directly

.. WITH-HEADERS <{ n:v,… }ǀ$#> Requests headers

.. WITH-OAUTH <stringǀ$#> Sets the authorization header using the named OAUTH token

.. WITH-BASIC <stringǀ$#> Sets the authorization header using the named BASIC config

.. WITH-QUERY <{ n:v,… }ǀǀ$#> Query string args as JSON nvps

.. WITH-BODY <name=value&…ǀ$#> For POST/PUT/PATCH (defaults to app/form-urlencoded)

.. WITH-METHOD <string}ǀ$#> To set HTTP method (defaults to GET)

.. WITH-ENCODING <media-typeǀ$#> To set custom encoding for POST/PUT/PATCH

.. WITH-FORMAT Sets accept header with config value

.. WITH-PROFILE Sets link profile header with config value

.. WITH-FORM <name}ǀ$#> Uses the metadata of the named form (URL, METHOD, ENCODING, FIELDS) to
construct an HTTP request (SIREN-only)

.. WITH-STACK Uses the top-level stack item as a set of vars for other operations (e.g., to fill in
forms, supply query string values, headers, etc.)

.. WITH-DATA <name=value&…ǀ$#> Fills in forms with ad hoc data

DISPLAYǀSHOW Shows saved response (from top of the LIFO stack)

.. ALL Returns the complete interaction (request, response metadata, response body)

.. REQUEST Returns request info (URL, method, query string, body, and headers)

.. METADATAǀMETA Returns the response metadata (URL, status, and headers)

.. RESPONSEǀPEEK Returns response body from the top of the stack

.. URLǀHREF Returns actual URL of the response

.. STATUSǀSTATUS-CODE Returns HTTP status of the response

428 | Appendix D: Using the HyperCLI

Comment lines
.. CONTENT-TYPE Returns HTTP content-type of the response

.. HEADERS Returns the complete HTTP header collection of the response

.. POP Removes response from top of the stack

.. CLEARǀFLUSH Removes all responses from the stack

.. LENǀLENGTH Returns length of saved stack

.. PATH <JSONPathǀXMLPathǀ$#> Returns results of a query (XML or JSON) from top-of-stack response

.. JPATH <JSONPathǀ$#> Returns results of a JSONPath query from top-of-stack response

.. XPATH <XMLPathǀ$#> Returns results of an XPath query from top-of-stack response

CJ Returns a strong-typed version of response from top of the stack (vnd.collec
tion+json)

.. METADATA Returns metadata array from a Collection+JSON response

.. LINKS Returns links array from a Collection+JSON response

.. ITEMS Returns items array from a Collection+JSON response

.. QUERIES Returns queries array from a Collection+JSON response

.. TEMPLATE Returns template collection from a Collection+JSON response

.. ERRORǀERRORS Returns error object from a Collection+JSON response

.. RELATED Returns the related object from a Collection+JSON response

.. IDǀNAMEǀRELǀTAG <stringǀ$#> Returns a single node

.. IDSǀRELSǀNAMESǀTAGS Returns a simple list

.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a Collection+JSON response

HAL Returns a strong-typed version of response from top of the stack (vnd.hal
+json)

.. LINKS Returns links array from a HAL response

.. EMBEDDED Returns items array from a HAL response

.. IDǀRELǀKEYǀNAMEǀTAG <stringǀ$#> Returns a single node

.. IDSǀRELSǀKEYSTAGS Returns a simple list

.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a HAL response

SIREN Returns a strong-typed version of response from top of the stack (vnd.siren
+json)

.. LINKS Returns links array from a SIREN response

.. ACTIONSǀFORMS Returns actions array from a SIREN response

.. ENTITIES Returns entities array from a SIREN response

.. PROPERTIES Returns properties array from a SIREN response

.. TAGǀCLASS <stringǀ$#> Returns nodes associated with the CLASS value

.. IDǀENTITY <stringǀ$#> Returns an entity associated with the ID

.. RELǀLINK <stringǀ$#> Returns a link associated with the REL

.. NAMEǀFORMǀACTION <stringǀ$#> Returns an action associated with the NAME

.. IDSǀRELSǀNAMESǀFORMSǀTAGSǀCLASSES Returns a simple list

Using the HyperCLI | 429

Comment lines
.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a SIREN response

WSTL Returns a strong-typed version of response from top of the stack (vnd.wstl
+json)

.. TITLE Returns title string from a WSTL response

.. ACTIONS Returns actions array from a WSTL response

.. DATA Returns entities array from a WSTL response

.. RELATED Returns related object from a WSTL response

.. CONTENT Returns content object from a WSTL response

.. IDǀRELǀNAMEǀFORMǀTAGǀTARGET
<stringǀ$#>

Returns a single node

..
IDSǀRELSǀNAMESǀFORMSǀTAGSǀTARGETS

Returns a simple list

.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a WSTL response

FJ Returns a strong-typed version of JSON+FORMS response from top of the stack
(forms+json)

.. METADATA Returns metadata array from a response

.. LINKS Returns links array from a response

.. ITEMS Returns items array from a response

.. ID <stringǀ$#> Returns an element (metadata, link, item) associated with the ID

.. TAG <stringǀ$#> Returns matching nodes

.. REL <stringǀ$#> Returns a link associated with the REL

.. NAME <stringǀ$#> Returns an element (metadata, link, property) associated with the NAME

.. IDSǀNAMESǀRELSǀFORMSǀTAGS Returns a simple list

.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a response

MASH Returns a strong-typed version of response from top of the stack (vnd.mash
+json)

.. METADATA Returns metadata array from a response

.. LINKS Returns links array from a response

.. ITEMS Returns items array from a response

.. TAG <stringǀ$#> Returns matching nodes

.. ID <stringǀ$#> Returns an element (metadata, link, item) associated with the ID

.. REL <stringǀ$#> Returns a link associated with the REL

.. NAME <stringǀ$#> Returns an element (metadata, link, property) associated with the NAME

.. IDSǀNAMESǀRELSǀFORMSǀTAGS Returns a simple list

.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a SIREN response

PRAG Returns a strong-typed version of response from top of the stack (vnd.prag
+json)

.. METADATA Returns metadata array from a PRAG response

.. LINKS Returns links array from a PRAG response

430 | Appendix D: Using the HyperCLI

Comment lines
.. ITEMS Returns items array from a PRAG response

.. ID <stringǀ$#> Returns an element (metadata, link, item) associated with the ID

.. TAG <stringǀ$#> Returns matching nodes

.. REL <stringǀ$#> Returns a link associated with the REL

.. NAME <stringǀ$#> Returns an element (metadata, link, property) associated with the NAME

.. IDSǀNAMESǀRELSǀFORMSǀTAGS Returns a simple list

.. PATH <JSONPathǀ$#> Returns results of a JSONPath query from a SIREN response

Using the HyperCLI | 431

Index

Symbols
*/http media types, 42
200 OK HTTP

about, 270
example, 271

201 CREATED, 77, 90
202 Accepted

synchronous reply for incomplete work
with, 381-386

300 Multiple Choices, 187
301 Moved Permanently, 165
404 Not Found

about, 271
example, 272
temporarily missing data, 301

410 Gone, 256
4xx Bad Request

about, 271
example, 272

502 Bad Gateway, 313
5xx Server Error

about, 271
example, 273

A
a priori design, 25
accept-profile request, 117-119
action, data as evidence of, 41
actions, external, 171-176
additional reading, 417
Advanced Research Projects Agency (ARPA),

22
Advanced Research Projects Agency Network

(ARPANET), 22

affordance (term), 13
AI (artificial intelligence), 157
alerts, 396-399
ALPS (see Application-Level Profile Semantics)
API client applications (see hypermedia clients)
API definition formats, 422
APIs.json, 203, 206-210
Application-Level Profile Semantics (ALPS)

coding effective clients to understand
vocabulary profiles, 113-116

describing problem spaces with, 69-72
supporting shared vocabularies in standard

formats for service interfaces, 197-200
“Architectural Styles and the Design of

Network-based Software Architectures”
(Fielding), 5

ARPA (Advanced Research Projects Agency),
22

ARPANET (Advanced Research Projects
Agency Network), 22

artificial intelligence (AI), 157
“As We May Think” (Bush), 11

B
Basho, Matsuo

on journeys, 407
Berners-Lee, Tim

goal of World Wide Web, 8
HTTP and HTML, 13
information architecture, 22
RDF initiatives, 14
Rule of Least Power, 246
universal linked information system, 46
universality of Web, 37

433

World Wide Web origins, 6-8, 12
binding targets, 27
binding, of client to responses, 27
Bossert, William, 14
bounded context, 15
breaking changes, 96
Bush, Vannevar, 11

C
caching directives

immutable caching, 287
improving performance with, 285-291

caching metadata
for API consumers, 287
consumer request with, 289
extended example, 289
provider response with, 288
for service providers, 286

capsulation, 42
choreography, 14, 32, 48
Clements, Paul

on good software architecture, 33
on software architecture, 163

client-driven workflow, 363
cloud services

service choreography, 49
service orchestration, 48

clusters, 400-403
Cockcroft, Adrian

on transitions, 410
Collection+JSON, 74, 151, 166, 175, 178, 257,

262, 340, 348
“Complex Information Processing” (Nelson), 9
composable (workflow-compliant) services,

317-321
content negotiation

converting internal models to external mes‐
sages, 171-176

supporting HTTP content negotiation,
186-189

content-profile response header, 117-119
Content-Type header, 125
control language, 23
COP (see custom one-off proxy)
correlation-id header, 319
Cross-Origin Resource Sharing (CORS), 83
custom one-off proxy (COP)

about, 239
example, 240

when to use, 242

D
data exchange, pass-through proxies for,

307-314
data fields, ignoring unknown, 280-285
data languages

information retrieval engines and, 45
robust, 44-46

data model changes
adding a new property, 293
modifying in production, 291-297
reverting models, 296
single-access function, 294
support for multiple schema versions, 296

data model relationships, hiding from external
actions, 256-260

data pass-through service, data source service
versus, 313

data properties, validating, 139-141
data query resource, 277
data query support, using media types for,

274-279
data recipes (see distributed data)
data results resource, 277
data source service, data pass-through service

versus, 313
data stores, extending, 298-302
data writes, 76-79
data, as evidence of action, 41
data-centric queries, returning HTTP 200 ver‐

sus HTTP 400 for, 270-274
data-centric service interfaces (see distributed

data)
database query language (DQL), 45
DCAP (Dublin Core Application Profile), 69
declarative documents, 331-333
dedicated operations, 81
Defined Exit Goal (DEG), 157-159
Defined State Goal (DSG), 159, 363
delayed response (DR), 381-386
delayed undo

about, 392
drawbacks of, 396
example, 394

dependency chain, 33
dependent services, runtime fallbacks for,

232-237
design (see hypermedia design)

434 | Index

Design of Everyday Things, The (Norman), 13
direct undo

about, 392
example, 393
rights and, 395

discoverability, 220-223
distributed data, 245-314

applying recipes, 409
basics, 245-246
data as evidence of action, 41
extending remote data stores, 298-302
hiding data relationships from external

actions, 256-260
hiding your data storage internals, 247-250
hypermedia design and, 40-46
ignoring unknown data fields, 280-285
improving performance with caching direc‐

tives, 285-291
leveraging HTTP URLs to support con‐

tains…AND queries, 260-264
limiting large-scale responses, 302-306
making all changes idempotent, 251-256
modifying data models in production,

291-297
outside versus inside, 42
reading versus writing, 43
returning HTTP 200 versus HTTP 400 for

data-centric queries, 270-274
returning metadata for query responses,

264-269
robust data languages, 44-46
using media types for data queries, 274-279
using pass-through proxies for data

exchange, 307-314
document model, 51
document queries, validating incoming mes‐

sages with, 147-149
documents, describing workflow as, 331-333
domain actions, expressing at runtime with

embedded hypermedia, 73-76
domain specifics, sharing via published vocab‐

ularies, 64-67
Domain-Driven Design (Evans), 15
domain-specific code, message-centric code

versus, 111-112
domain-specific language (DSL), 329-330
DQL (database query language), 45
DR (delayed response), 381-386
Dream Machines (Nelson), 12

DSG (Defined State Goal), 159, 363
DSL (domain-specific language), 329-330
Dublin Core Application Profile (DCAP), 69
Dynabook, 12

E
EBO (exponential backoff), 388, 391
ELP (see enterprise-level proxy)
embedded hypermedia messages, 73-76
empty collections, returning HTTP 200 versus

HTTP 400, 270-274
Engelbart, Douglas, 12
enterprise-level proxy (ELP)

about, 239
example, 241
when to use, 242

entity relationships, hiding from external
actions, 256-260

error handling
calling for help, 396-399
workflow errors, 52

error reporting, 216-219
Evans, Eric, 15
evidence of action, data as, 41
evolvability, hypermedia controls and, 38
“Explaining Information Architecture” (video),

25
exponential backoff (EBO), 388, 391
extensible messages, 91-94
external messages, converting internal models

to, 171-176
extreme late-binding, 8, 20, 25

F
failed HTTP requests, 387-391
fallbacks, for dependent services, 232-237
Fielding, Roy T.

and architectural properties of key interest,
5

and Hypermedia Constraint, 132
and hypermedia design, 20
and information architecture, 22
and REST concept, 5-6
and RESTful APIs, 190
and temporal thinking, 37
and timescales of REST software design, 18

find and bind, 39
forking the interface, 96
formats, binding to, 27

Index | 435

forms
hypermedia and, 10
nonhypermedia services, 135-138

FORMS
for transferring state between services, 80,

81
for updating existing records, 248
validating with JSON Schema, 144

functions, internal, expressing as external
actions, 171-176

G
generality of interfaces, 20
Gibson, James J., 13
goal-oriented clients, 156-161
guiding principles of RESTful web APIs, 415

H
H-Factors (hypermedia factors), 132-135
HAL, 139, 262, 268
HAL-FORMS, 139
HCI (Human–Computer Interaction) move‐

ment, 13
Health Check Response Format for HTTP

APIs, 211
information in OPTIONS responses, 214
information in service metadata documents,

214
health monitoring, of dependent services,

210-216
help, calling for, 396-399
hiding data storage internals, 247-250
Hippocratic Oath of APIs, 35-37, 95
HTTP (Hypertext Transfer Protocol)

advertising support for client response pref‐
erences, 181-186

coding clients to be HTTP aware, 107-110
messages and, 13
supporting HTTP content negotiation,

186-189
HTTP API, 260-264
HTTP DELETE, 88, 256, 395
HTTP metadata resource, 338
HTTP OPTIONS

and supported client preferences, 183-186
SDDs in HTTP OPTIONS responses, 204

HTTP PATCH, 251
HTTP POST

HTTP PUT versus, 76-79, 87

lost response problem and, 228-229
HTTP PUT

creating new resource with, 252
designing consistent data writes with idem‐

potent actions, 76-79
handling a 410 Gone response, 256
handling a failed update, 254
HTTP POST versus, 87
improving reliability of data writes on the

web, 251-256
lost response problem and, 229-231
rolling back changes with, 89
updating existing resource with, 253

HTTP requests
runtime resolution with metadata, 28
short-term fixes with automatic retries,

387-391
HTTP response, 270-274
hyper utility, 425
HyperCLI, 133, 154, 425-427

simple HyperLANG script, 425
hypermedia (generally)

a priori design, 25
affordances, 13
defined, 9
development/evolution, 10-12
impact on technology, xii
power of vocabularies, 14
reasons to use, 9-16
thinking/designing in, 19-52
value of messages, 13

hypermedia clients, 101-161
applying recipes, 408
basics, 101-102
coding clients to be HTTP aware, 107-110
coding effective clients to understand

vocabulary profiles, 113-116
coding more resilient clients with message-

centric implementations, 110-112
having a goal in mind, 156-161
including identifiers for important elements

within a response, 128-131
increasing resilience with, 26-32
limiting the use of hardcoded URLs,

103-107
M2M challenges, 29
maintaining your own state, 153-156
managing representation formats at run‐

time, 119-123

436 | Index

negotiating for profile support at runtime,
116-119

relying on hypermedia controls in response,
132-135

runtime resolution with metadata, 28
semantic vocabularies, 30
supporting client-centric workflows, 31-32
supporting links and forms for nonhyper‐

media services, 135-138
using document queries to validate incom‐

ing messages, 147-149
using document schemas to validate outgo‐

ing messages, 141-147
using schema documents as a source of

message metadata, 123-128
validating data properties at runtime,

139-141
validating incoming data, 150-153

Hypermedia Constraint, 132
hypermedia controls, evolvability and, 38
hypermedia design, 57-59

applying recipes, 408
basics, 57-98
creating interoperability with registered

media types, 60-61
describing problem spaces with semantic

profiles, 68-72
designing consistent data writes with idem‐

potent actions, 76-79
designing for extensible messages, 91-94
designing for modifiable interfaces, 95-98
designing for repeatable actions, 84-87
designing for reversible actions, 87-91
empowering extensibility with hypermedia

workflow, 46-52
enabling interoperability with inter-service

state transfers, 79-83
enduring future compatibility with struc‐

tured media types, 62-63
establishing a foundation, 21-25
expressing domain actions at runtime with

embedded hypermedia, 73-76
ideas behind, 19-52
increasing resilience with hypermedia cli‐

ents, 26-32
on scale of decades, 18
promoting stability/modifiability with

hypermedia services, 33-40

sharing domain specifics via published
vocabularies, 64-67

supporting distributed data, 40-46
hypermedia services, 163-243

advertising support for client response pref‐
erences, 181-186

applying recipes, 408
converting internal models to external mes‐

sages, 171-176
hypermedia support for stability/evolvabil‐

ity, 37-39
improving reliability with idempotent cre‐

ate, 228-231
improving service discoverability with Run‐

time Service Registry, 220-223
increasing throughput with client-supplied

identifiers, 224-227
modifiability problem, 34-37
preventing internal model leaks, 167-170
promoting stability/modifiability, 33-40
providing runtime fallbacks for dependent

services, 232-237
publishing API metadata, 206-210
publishing at least one stable URL, 165-167
publishing complete vocabularies for

machine clients, 190-196
publishing service definition documents,

202-205
from self-servicing to find and bind, 39
standardizing error reporting, 216-219
supporting HTTP content negotiation,

186-189
supporting service health monitoring,

210-216
supporting shared vocabularies in standard

formats, 196-201
transforming existing services, 410
using semantic proxies to access noncom‐

pliant services, 238-243
workflow, 46

hypermedia signature, 132-135
hypermedia workflow, 46-52, 315-406

about, 49-51
applying recipes, 409
basics, 315-317
calling for help, 396-399
challenges for implementing, 51
choreography and orchestration, 47-51
constrained workflow, 52

Index | 437

describing workflow as code, 325-328
describing workflow as documents, 331-333
describing workflow as DSL, 329-330
designing workflow-compliant services,

317-321
empowering extensibility with, 46-52
enabling standard list navigation, 358-362
error handling, 52
exposing a progress resource for workflows,

338-342
jazz analogy, 50
observable workflow, 52
optimizing queries with stored replays,

375-380
returning all related actions, 342-346
returning most recently used resources,

346-350
scaling with queues and clusters, 400-403
sharing state, not data models, 51
short-term fixes with automatic retries,

387-391
supporting client-centric workflows, 31-32
supporting local undo or rollback, 391-396
supporting partial form submit, 363-366
supporting RESTful job control language,

334-338
supporting shared state for workflows,

322-325
supporting stateful work in progress,

350-357
synchronous reply for incomplete work

with 202 Accepted, 381-386
time as workflow element, 52
using state-watch to enable client-driven

workflow, 363
using workflow proxies to enlist noncompli‐

ant services, 400-403
hypertext, origin of term, 7, 10

I
IA (see information architecture)
IANA (Internet Assigned Numbers Authority)

Media Types Registry, 38
IBO (incremental backoff), 388
idempotence

designing consistent data writes with idem‐
potent actions, 76-79

designing for repeatable actions, 84-87
making all changes idempotent, 251-256

identifiers
for every important element within a

response, 128-131
increasing throughput with client-supplied

identifiers, 224-227
RDF and, 15

IETF (Internet Engineering Task Force), 23
immediate retry (IR), 388
immutable caching, 287
import/export operations, 80
incoming messages, validating, 147-149,

150-153
incomplete work, synchronous reply with 202

Accepted response status, 381-386
incremental backoff (IBO), 388
Information Architects (Wurman), 24
information architecture (IA)

origins, 22
Peter Morville and, 24

Information Architecture (Morville and Rose‐
nfeld), 14, 24

“Information Management: A Proposal”
(Berners-Lee), 6

information retrieval engines, 45
information retrieval query language (IRQL)

DQLs versus, 45
leveraging HTTP URLs to support con‐

tains…AND queries, 260-264
returning metadata for query responses,

264-269
inter-service state transfers, 79-83
interfaces, modifiable, 95-98
internal functions, expressing as external

actions, 171-176
Internet Assigned Numbers Authority (IANA)

Media Types Registry, 38
Internet Engineering Task Force (IETF), 23
interoperability

creating with registered media types, 60-61
enabling inter-service state transfers, 79-83

IR (immediate retry), 388
IRQL (see information retrieval query lan‐

guage)
IRQL-like data engines, 45
Isakowitz, Tomas, 10

J
jazz, as hypermedia workflow analogy, 50
job control language (JCL), 334-338

438 | Index

executing workflow with, 335
managing RESTful JCL records, 336
shared state, correlation IDs, and progress,

337
JSON, 123-128
JSON Path queries, 149
JSON Schema

validating FORMS with, 144
validation of sample document, 127
XML Schema versus, 146

K
Kay, Alan

and extreme late-binding, 8
and hypermedia design, 20
and messages in object-oriented program‐

ming, 13
and OOP, 8

Klyn, Dan
“Explaining Information Architecture”

(video), 25
on elements of information architecture, 14

L
late binding (see extreme late-binding)
leaks

hiding your data storage internals, 247-250
preventing internal model leaks in services,

167-170
learning resources, 411, 417
Licklider Transmission Protocol (LTP), 23
Licklider, J.C.R. “Lick”

and ARPANET, 22-24
on communication, 57

links, for nonhypermedia services, 135-138
list navigation, 358-362
lost response problem

improving reliability of services with idem‐
potent create, 228-231

network failures, 255
LTP (Licklider Transmission Protocol), 23

M
M2M (machine-to-machine) interactions

hiding from data relationships from exter‐
nal actions, 260

hypermedia client design challenges, 29

publishing complete vocabularies for
machine clients, 190-196

response delays, 44
semantic vocabularies, 30
SMTs and, 62-63
using document queries to validate incom‐

ing messages, 147-149
Machine Accessible Semantic Hypermedia

(MASH), 128
magic strings, 15, 66, 190
Manhattan Project, 11
master data management (MDM), 40
Meadows, Donella H.

on boundaries of systems, 19
media types, for data query support, 274-279
message format

as binding target, 27
managing representation formats for client

applications at runtime, 119-123
stability and, 38

message-centric code, domain-specific code
versus, 111-112

message/http media type, 42
messages

converting internal models to external mes‐
sages, 171-176

designing for extensible messages, 91-94
expressing domain actions at runtime with

embedded hypermedia messages, 73-76
HTTP and, 13
unknown properties with incoming mes‐

sages, 127
using document queries to validate incom‐

ing messages, 147-149
validating incoming messages, 150-153
validating outgoing messages with schema

documents, 141-147
value of, 13

meta-preferences, 183-185
metadata

publishing API metadata about service
interface, 206-210

returning for query responses, 264-269
runtime resolution with, 28
schema documents as source of message

metadata for client applications, 123-128
synchronous reply for incomplete work

with 202 Accepted response status,
381-386

Index | 439

metamessages, 23, 25
Meyer, Paul J.

on productivity, 315
model leaks, preventing, 167-170
modifiability

Hippocratic Oath of APIs, 35-37
hypermedia services, 34-37

modifiability, as architectural property, 6
Morville, Peter, 14, 24
most recently used (MRU) resources, 346-350
“Mother of All Demos” (Engelbart), 12
Must Ignore rule, 281, 284

N
Nadareishvili, Irakli

on breaking the data-centric habit, 245
on treating all data as remote, 40

name-value pair (NVP) collection, 92
Nelson, Ted, 12, 26

and hypermedia design, 20
and hypertext, 7, 9
on telling computers what to do, 101

network failure
handling, 255
short-term fixes with automatic retries,

387-391
network idempotence, 84
network-level language, 23
nodes, 10
noncompliant services, 400-403
nonhypermedia services, 135-138
Norman, Donald

on affordance, 13
on affordances in well-designed objects, 17
on user actions, 363

NVP (name-value pair) collection, 92

O
object-oriented programming (OOP), 8
observability, 52
ontology, 14, 15
operation idempotence, 84
orchestration, 47
Otlet, Paul, 11
outgoing messages, validating, 141-147

P
PAGE (percepts, actions, goals, environment)

model, 157
pagination, 358-362
parallel properties, 92
Partial Form Submit (PFS), 363-366
pass-through recipes, 411

using pass-through proxies for data
exchange, 307-314

using semantic proxies to access noncom‐
pliant services, 238-243

pass-through service, 308, 313
PCN (see proactive content negotiation)
performance, as architectural property, 6
personal computing, 12
PFS (Partial Form Submit), 363-366
Poe, Curtis, 8
portability, as architectural property, 6
POST (see HTTP POST)
Postel’s Law

client security and, 151
schema documents and, 124

proactive content negotiation (PCN)
about, 186
drawbacks, 189
example, 187

problem spaces, describing with semantic pro‐
files, 68-72

production, modifying data models in, 291-297
progress resource, 338-342
protocol-aware clients, 107-110
protocols, binding to, 27
proxies

accessing noncompliant services with,
238-243

using workflow proxies to enlist noncompli‐
ant services, 400-403

PUT (see HTTP PUT)

Q
queries

database versus information retrieval, 45
optimizing with stored replays, 375-380
using document queries to validate incom‐

ing messages, 147-149
query metadata, 264-269
query resources

managing stored resources, 379

440 | Index

optimizing queries with stored replays,
375-380

query responses
implementing direct limits, 304
implementing truncated limits, 305
limiting large-scale responses, 302-306
query limits versus page sizes, 306

queues, scaling workflow with, 400-403

R
randomized retry (RR), 388
RCN (see reactive content negotiation)
RDF (see Resource Description Framework)
reactive content negotiation (RCN)

about, 187
drawbacks, 189
example, 188

reading data, rules for, 43
registered media type (RMT), 60-61, 421-422
regular interval retries (RIR), 388
related IANA link, 343-346
related standards documents, 421-423
reliability

as architectural property, 6
improving, 228-231

remote data store, 298-302
repeatable actions, designing for, 84-87

message repeatability, 85
network repeatability, 85

representation formats, managing at runtime,
119-123

Representational State Transfer (REST), 5-6
request metadata, runtime resolution with, 28
request-id header, 319
resilience

binding to protocols/formats, 27
coding more resilient clients with message-

centric implementations, 110-112
increasing resilience with hypermedia cli‐

ents, 26-32
M2M challenges, 29
runtime resolution with metadata, 28

Resource Description Framework (RDF), 14
identifiers and, 15
supporting shared vocabularies in standard

formats for service interfaces, 197-201
resources, hypermedia and, 10
response preferences, advertising support for,

181-186

REST (Representational State Transfer), 5-6
RESTful web API (RWA) (generally)

basics, 4-18
change and, 18
guiding principles, 415
leveraging global reach, 16
Licklider Transmission Protocol, 23
shared principles for scalable services on the

Web, 16-18
solving novel problems, 17

RESTful Web APIs (Richardson, Amundsen,
and Ruby), 15

retries
options for handling transient network

problems, 388
short-term fixes with automatic retries,

387-391
reversible actions, designing for, 87-91
rich input description (RID), 139-141
Richardson, Leonard, 4, 15
RID (rich input description), 139-141
RIR (regular interval retries), 388
RMT (registered media type), 60-61, 421-422
rollbacks

designing for reversible actions, 87-91
supporting local undo or rollback, 391-396

Rosenfeld, Louis, 14
RR (randomized retry), 388
RSR (Runtime Service Registry), improving

service discoverability with, 220-223
Rule of Least Power, 7, 246
runtime

managing representation formats for client
applications at runtime, 119-123

negotiating for profile support at runtime,
116-119

providing runtime fallbacks for dependent
services, 232-237

resolution with metadata, 28
validating data properties, 139-141

runtime errors, 216-219
Runtime Service Registry (RSR), improving

service discoverability with, 220-223
RWA (see RESTful web API)

S
scalability, as architectural property, 6
schema documents

Index | 441

problems inherent in validating incoming
messages with, 149

source of message metadata for client appli‐
cations, 123-128

validating outgoing messages with, 141-147
schema negotiation, 125
SDD (Service Definition Document)

HTTP OPTIONS responses, 204
HTTP response header, 203
publishing, 202-205
service metadata responses, 203

security
including unknown properties with incom‐

ing messages, 127
validating incoming data, 150-153

semantic gap, 15
semantic profile document (SPD), 68-72, 423
semantic profile proxy (SPP)

about, 239
example, 241
when to use, 242

semantic profile support, 116-119
semantic proxies, 238-243
semantic validation, 150
semantic vocabularies, 30
semantics, shared vocabularies and, 196-201
Senses Considered as Perceptual Systems, The

(Gibson), 13
Service Definition Document (see SDD)
service interfaces

designing for modifiable interfaces, 95-98
three rules for modifying, 96
using media types for data queries, 274-279

service orchestration (see orchestration)
service proxies, 238-243
services (see hypermedia services)
services, transforming, 410
shared principles for scalable services on the

Web, 16-18
shared references, 80, 82
shared state, 322-325
shared state resource, 322-325
simplicity, as architectural property, 6
single source of truth (SSOT), 40
SIREN, 36, 133, 140, 184
SMT (structured media type), 62-63
SOR (systems of record), 40
source code, describing workflow as, 325-328
source service, pass-through service versus, 313

space race (1960s), 23
SPD (semantic profile document), 68-72, 423
SPP (see semantic profile proxy)
SQL-like data engines, 45
SSOT (single source of truth), 40
stability

hypermedia support for, 37-39
message formats and, 38

standards documents, 421-423
API definition formats, 422
hypermedia supporting types, 423
registered media types, 421-422
semantic profile documents (SPDs), 423

state transfers, 79-83
state transitions, 342-346
state, maintaining your own, 153-156
state-watch

defined, 367
enabling client-driven workflow with, 363
typical interaction, 370

stateless choreography (see choreography)
storage service, pass-through service versus,

308
stored queries, 375-380
streaming data engines, 45
structured media type (SMT), 62-63
supplemental reading materials, 417
syntactic validation, 150
systems of record (SOR), 40

T
taxonomy, 14, 15
time, as workflow element, 52
timescales of systems, 17, 33-40
ToDo domain application, 111-112
transformation of existing services, 410
transient state, 153-156

U
undo, supporting local, 391-396
Uniform Resource Locator (see URL)
universal resource identifier (URI), 10
Universally Unique Identifier (UUID), 224-225
unknown data fields, ignoring, 280-285
unstructured media types, 123-128
updates to hypermedia services, 34-37
URI (universal resource identifier), 10
URL (Uniform Resource Locator)

as binding targets, 27

442 | Index

limiting memorized client URLs to one with
hypermedia, 105

loading named URL variables from configu‐
ration, 105

publishing at least one stable URL, 165-167
reducing chances of client failure when ser‐

vice URLs are changed, 103-107
using named URL variables, 104

US Department of Defense
ARPANET, 22
J.C.R. Licklider and, 22-24

UUID (Universally Unique Identifier), 224-225

V
validation

of FORMS with JSON Schema, 144
of outgoing messages with schema docu‐

ments, 141-147
visibility, as architectural property, 6
vocabularies, 17

coding effective clients to understand
vocabulary profiles, 113-116

publishing complete vocabularies for
machine clients, 190-196

semantic vocabularies, 30
sharing domain specifics via published

vocabularies, 64-67
supporting shared vocabularies in standard

formats for service interfaces, 196-201

W
Wilson, E. O., 14

work-in-progress (WIP)
single-page WIP documents, 356
stateful, 350-357

workflow (see hypermedia workflow)
workflow-compliant proxies, 400-403
workflow-compliant services, 317-321

correlation IDs for tasks and jobs, 319
shared state, 318
workflow actions, 317

workflow-progress resource, 338-342
World Wide Network, 11
World Wide Web (WWW)

basics, 6-8
goal of, 8

writing data
designing consistent data writes with idem‐

potent actions, 76-79
rules for, 43

Wurman, Richard Saul, 24
WWW (see World Wide Web)

X
XML messages, validating with XML Schema,

143
XML Path queries, 149
XML Schema

JSON Schema versus, 146
validating XML messages with, 143

XML schema documents, as source of message
metadata for client applications, 123-128

Index | 443

About the Author
An internationally known author and speaker, Mike Amundsen consults with organ‐
izations around the world on network architecture, web development, and the inter‐
section of technology and society. He works with companies large and small to help
them capitalize on the opportunities APIs, microservices, and digital transformation
present for both consumers and the enterprise.

Colophon
The animal on the cover of RESTful Web API Patterns and Practices Cookbook is a
Grandidier’s mongoose (Galidictis grandidieri), named after the French naturalist and
explorer Alfred Grandidier who visited Madagascar several times in the 1860s. There
are six known species of mongoose in Madagascar; Grandider’s mongoose lives in
only a very small, remote, subtropical area around Lac Tsimanampetsotsa in south‐
western Madagascar that researchers struggle to access.

Grandidier’s mongoose, also known as the giant-striped mongoose, is 32 to 40 cm
long with a 28 to 30 cm tail and has eight wide, dark stripes on its light brown fur. To
avoid the heat of the region, this species has evolved to be nocturnal. The full diet of
these carnivores is unknown, but they do eat invertebrates. We also don’t know the
typical lifespan of Grandidier’s mongoose, but they have been documented breeding
year-round in monogamous pairs.

Grandidier’s mongoose is endangered, and their habitat itself is endangered as well.
Many of the animals on O’Reilly’s covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Histoire Naturelle. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	About This Book
	Who Should Read This Book
	What’s Covered
	What’s Not Covered
	About These Recipes
	How to Use This Book

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Understanding RESTful Hypermedia
	Chapter 1. Introducing RESTful Web APIs
	What Are RESTful Web APIs?
	Fielding’s REST
	The Web of Tim Berners-Lee
	Alan Kay’s Extreme Late Binding

	Why Hypermedia?
	Hypermedia: A Definition
	A Century of Hypermedia
	The Value of Messages
	The Power of Vocabularies
	Richardson’s Magic Strings

	Shared Principles for Scalable Services on the Web
	Leverage Global Reach…
	…to Solve Problems You Haven’t Thought of…
	…for People You Have Never Met
	Dealing with Timescales
	This Will All Change

	Chapter 2. Thinking and Designing in Hypermedia
	Establishing a Foundation with Hypermedia Designs
	Licklider’s Aliens
	Morville’s Information Architecture
	Hypermedia and “A Priori Design”

	Increasing Resilience with Hypermedia Clients
	Binding to Protocols and Formats
	Runtime Resolution with Metadata
	Machine-to-Machine Challenges
	Relying on Semantic Vocabularies
	Supporting Client-Centric Workflows

	Promoting Stability and Modifiability with
Hypermedia Services
	The Modifiability Problem
	How Hypermedia Can Help
	From Self-Servicing to Find and Bind

	Supporting Distributed Data
	Data Is Evidence of Action
	Outside Versus Inside
	Read Versus Write
	Robust Data Languages

	Empowering Extensibility with Hypermedia Workflow
	Choreography, Orchestration, and Hypermedia Workflow
	Workflow Challenges
	Quick Summary

	Part II. Hypermedia Recipe Catalog
	Chapter 3. Hypermedia Design
	3.1 Creating Interoperability with Registered Media Types
	Problem
	Solution
	Discussion
	See Also

	3.2 Ensuring Future Compatibility with
Structured Media Types
	Problem
	Solution
	Example
	Discussion
	See Also

	3.3 Sharing Domain Specifics via Published Vocabularies
	Problem
	Solution
	Example
	Discussion
	See Also

	3.4 Describing Problem Spaces with Semantic Profiles
	The Problem
	The Solution
	Example
	Discussion
	See Also

	3.5 Expressing Actions at Runtime with Embedded Hypermedia
	Problem
	Solution
	Example
	Discussion
	See Also

	3.6 Designing Consistent Data Writes with
Idempotent Actions
	Problem
	Solution
	Example
	Discussion
	See Also

	3.7 Enabling Interoperability with Inter-Service
State Transfers
	Problem
	Solution
	Example
	Discussion
	See Also

	3.8 Designing for Repeatable Actions
	Problem
	Solution
	Example
	Discussion
	See Also

	3.9 Designing for Reversible Actions
	Problem
	Solution
	Example
	Discussion
	See Also

	3.10 Designing for Extensible Messages
	Problem
	Solution
	Example
	Discussion
	See Also

	3.11 Designing for Modifiable Interfaces
	Problem
	Solution
	Example
	Discussion
	See Also

	Chapter 4. Hypermedia Clients
	4.1 Limiting the Use of Hardcoded URLs
	Problem
	Solution
	Example
	Discussion
	See Also

	4.2 Coding Clients to Be HTTP Aware
	Problem
	Solution
	Example
	Discussion
	See Also

	4.3 Coding Resilient Clients with Message-Centric Implementations
	Problem
	Solution
	Example
	Discussion
	See Also

	4.4 Coding Effective Clients to Understand
Vocabulary Profiles
	Problem
	Solution
	Example
	Discussion
	See Also

	4.5 Negotiating for Profile Support at Runtime
	Problem
	Solution
	Example
	Discussion
	See Also

	4.6 Managing Representation Formats at Runtime
	Problem
	Solution
	Example
	Discussion
	See Also

	4.7 Using Schema Documents as a Source of
Message Metadata
	Problem
	Solution
	Example
	Discussion
	See Also

	4.8 Every Important Element Within a Response
Needs an Identifier
	Problem
	Solution
	Example
	Discussion
	See Also

	4.9 Relying on Hypermedia Controls in the Response
	Problem
	Solution
	Example
	Discussion
	See Also

	4.10 Supporting Links and Forms for
Nonhypermedia Services
	Problem
	Solution
	Example
	Discussion
	See Also

	4.11 Validating Data Properties at Runtime
	Problem
	Solution
	Example
	Discussion
	See Also

	4.12 Using Document Schemas to Validate
Outgoing Messages
	Problem
	Solution
	Example
	Discussion
	See Also

	4.13 Using Document Queries to Validate
Incoming Messages
	Problem
	Solution
	Example
	Discussion
	See Also

	4.14 Validating Incoming Data
	Problem
	Solution
	Example
	Discussion
	See Also

	4.15 Maintaining Your Own State
	Problem
	Solution
	Example
	Discussion
	See Also

	4.16 Having a Goal in Mind
	Problem
	Solution
	Example
	Discussion
	See Also

	Chapter 5. Hypermedia Services
	5.1 Publishing at Least One Stable URL
	Problem
	Solution
	Example
	Discussion
	See Also

	5.2 Preventing Internal Model Leaks
	Problem
	Solution
	Example
	Discussion
	See Also

	5.3 Converting Internal Models to External Messages
	Problem
	Solution
	Example
	Discussion
	See Also

	5.4 Expressing Internal Functions as External Actions
	Problem
	Solution
	Example
	Discussion
	See Also

	5.5 Advertising Support for Client Response Preferences
	Problem
	Solution
	Example
	Discussion
	See Also

	5.6 Supporting HTTP Content Negotiation
	Problem
	Solution
	Example
	Discussion
	See Also

	5.7 Publishing Complete Vocabularies for Machine Clients
	Problem
	Solution
	Example
	Discussion
	See Also

	5.8 Supporting Shared Vocabularies in Standard Formats
	Problem
	Solution
	Example
	Discussion
	See Also

	5.9 Publishing Service Definition Documents
	Problem
	Solution
	Example
	Discussion
	See Also

	5.10 Publishing API Metadata
	Problem
	Solution
	Example
	Discussion
	See Also

	5.11 Supporting Service Health Monitoring
	Problem
	Solution
	Example
	Discussion
	See Also

	5.12 Standardizing Error Reporting
	Problem
	Solution
	Example
	Discussion
	See Also

	5.13 Improving Service Discoverability with a Runtime Service Registry
	Problem
	Solution
	Example
	Discussion
	See Also

	5.14 Increasing Throughput with Client-Supplied Identifiers
	Problem
	Solution
	Example
	Discussion
	See Also

	5.15 Improving Reliability with Idempotent Create
	Problem
	Solution
	Example
	Discussion
	See Also

	5.16 Providing Runtime Fallbacks for Dependent Services
	Problem
	Solution
	Example
	Discussion
	See Also

	5.17 Using Semantic Proxies to Access
Noncompliant Services
	Problem
	Solution
	Example
	Discussion
	See Also

	Chapter 6. Distributed Data
	6.1 Hiding Your Data Storage Internals
	Problem
	Solution
	Example
	Discussion
	See Also

	6.2 Making All Changes Idempotent
	Problem
	Solution
	Example
	Discussion
	See Also

	6.3 Hiding Data Relationships for External Actions
	Problem
	Solution
	Example
	Discussion
	See Also

	6.4 Leveraging HTTP URLs to Support “Contains”
and “AND” Queries
	Problem
	Solution
	Example
	Discussion
	See Also

	6.5 Returning Metadata for Query Responses
	Problem
	Solution
	Example
	Discussion
	See Also

	6.6 Returning HTTP 200 Versus HTTP 400 for
Data-Centric Queries
	Problem
	Solution
	Example
	Discussion
	See Also

	6.7 Using Media Types for Data Queries
	Problem
	Solution
	Example
	Discussion
	See Also

	6.8 Ignoring Unknown Data Fields
	Problem
	Solution
	Example
	Discussion
	See Also

	6.9 Improving Performance with Caching Directives
	Problem
	Solution
	Example
	Discussion
	See Also

	6.10 Modifying Data Models in Production
	Problem
	Solution
	Example
	Discussion
	See Also

	6.11 Extending Remote Data Stores
	Problem
	Solution
	Example
	Discussion
	See Also

	6.12 Limiting Large-Scale Responses
	Problem
	Solution
	Example
	Discussion
	See Also

	6.13 Using Pass-Through Proxies for Data Exchange
	Problem
	Solution
	Example
	Discussion
	See Also

	Chapter 7. Hypermedia Workflow
	7.1 Designing Workflow-Compliant Services
	Problem
	Solution
	Example
	Discussion
	See Also

	7.2 Supporting Shared State for Workflows
	Problem
	Solution
	Example
	Discussion
	See Also

	7.3 Describing Workflow as Code
	Problem
	Solution
	Example
	Discussion
	See Also

	7.4 Describing Workflow as DSL
	Problem
	Solution
	Example
	Discussion
	See Also

	7.5 Describing Workflow as Documents
	Problem
	Solution
	Example
	Discussion
	See Also

	7.6 Supporting RESTful Job Control Language
	Problem
	Solution
	Discussion
	See Also

	7.7 Exposing a Progress Resource for Your Workflows
	Problem
	Solution
	Example
	Discussion
	See Also

	7.8 Returning All Related Actions
	Problem
	Solution
	Example
	Discussion
	See Also

	7.9 Returning Most Recently Used Resources
	Problem
	Solution
	Example
	Discussion
	See Also

	7.10 Supporting Stateful Work in Progress
	Problem
	Solution
	Example
	Discussion
	See Also

	7.11 Enabling Standard List Navigation
	Problem
	Solution
	Example
	Discussion
	See Also

	7.12 Supporting Partial Form Submit
	Problem
	Solution
	Example
	Discussion
	See Also

	7.13 Using State-Watch to Enable Client-Driven Workflow
	Problem
	Solution
	Typical State-Watch Interaction
	Example
	Discussion
	See Also

	7.14 Optimizing Queries with Stored Replays
	Problem
	Solution
	Example
	Discussion
	See Also

	7.15 Synchronous Reply for Incomplete Work
with 202 Accepted
	Problem
	Solution
	Example
	Discussion
	See Also

	7.16 Short-Term Fixes with Automatic Retries
	Problem
	Solution
	Example
	Discussion
	See Also

	7.17 Supporting Local Undo or Rollback
	Problem
	Solution
	Example
	Discussion
	See Also

	7.18 Calling for Help
	Problem
	Solution
	Example
	Discussion
	See Also

	7.19 Scaling Workflow with Queues and Clusters
	Problem
	Solution
	Discussion
	See Also

	7.20 Using Workflow Proxies to Enlist
Noncompliant Services
	Problem
	Solution
	Example
	Discussion
	See Also

	Chapter 8. Closing Remarks
	Applying These Recipes
	Design First
	Clients and Servers Unite!
	Starting with Data Is Challenging
	Going with the Flow

	Transforming Existing Services
	Additional Resources
	Next Steps

	Appendix A. Guiding Principles of RESTful Web APIs
	Appendix B. Additional Reading
	Appendix C. Related Standards
	Viable Registered Media Types for RESTful Web APIs
	Structured Media Types
	Unstructured Media Types
	Unregistered Media Types

	API Definition Formats
	Semantic Profile Document Formats
	Hypermedia Supporting Types

	Appendix D. Using the HyperCLI
	Hello, Hyper!
	Other Information
	HyperCLI Commands

	Index
	About the Author

